عرض بسيط للتسجيلة

المؤلفPourbabaee, Bahareh
المؤلفMeskin, Nader
المؤلفKhorasani, Khashayar
تاريخ الإتاحة2021-09-01T10:02:48Z
تاريخ النشر2016
اسم المنشورIEEE Transactions on Control Systems Technology
المصدرScopus
معرّف المصادر الموحدhttp://dx.doi.org/10.1109/TCST.2015.2480003
معرّف المصادر الموحدhttp://hdl.handle.net/10576/22414
الملخصIn this paper, a novel sensor fault detection, isolation, and identification (FDII) strategy is proposed using the multiple-model (MM) approach. The scheme is based on multiple hybrid Kalman filters (MHKFs), which represents an integration of a nonlinear mathematical model of the system with a number of piecewise linear (PWL) models. The proposed fault detection and isolation (FDI) scheme is capable of detecting and isolating sensor faults during the entire operational regime of the system by interpolating the PWL models using a Bayesian approach. Moreover, the proposed MHKF-based FDI scheme is extended to identify the magnitude of a sensor fault using a modified generalized likelihood ratio method that relies on the healthy operational mode of the system. To illustrate the capabilities of our proposed FDII methodology, extensive simulation studies are conducted for a nonlinear gas turbine engine. Various single and concurrent sensor fault scenarios are considered to demonstrate the effectiveness of our proposed online hierarchical MHKF-based FDII scheme under different flight modes. Finally, our proposed hybrid Kalman filter (HKF)-based FDI approach is compared with various filtering methods such as the linear, extended, unscented, and cubature Kalman filters corresponding to both interacting and noninteracting MM-based schemes. Our comparative studies confirm the superiority of our proposed HKF method in terms of promptness of the fault detection, lower false alarm rates, as well as robustness with respect to the engine health parameter degradations. 2015 IEEE.
اللغةen
الناشرInstitute of Electrical and Electronics Engineers Inc.
الموضوعBayesian networks
Engines
Fault tolerant computer systems
Gas turbines
Kalman filters
Piecewise linear techniques
Cubature kalman filters
Extensive simulations
Fault detection and isolation schemes
Generalized likelihood ratio method
Nonlinear gas turbines
Nonlinear mathematical model
Piecewise linear models
Sensor fault detection
Fault detection
العنوانSensor Fault Detection, Isolation, and Identification Using Multiple-Model-Based Hybrid Kalman Filter for Gas Turbine Engines
النوعArticle
الصفحات1184-1200
رقم العدد4
رقم المجلد24
dc.accessType Abstract Only


الملفات في هذه التسجيلة

الملفاتالحجمالصيغةالعرض

لا توجد ملفات لها صلة بهذه التسجيلة.

هذه التسجيلة تظهر في المجموعات التالية

عرض بسيط للتسجيلة