عرض بسيط للتسجيلة

المؤلفAdam, A. M. A.
المؤلفBashier, E. B. M.
المؤلفHashim, M. H. A.
المؤلفPatidar, K. C.
تاريخ الإتاحة2021-09-01T10:02:50Z
تاريخ النشر2016
اسم المنشورMathematical Methods in the Applied Sciences
المصدرScopus
معرّف المصادر الموحدhttp://dx.doi.org/10.1002/mma.3756
معرّف المصادر الموحدhttp://hdl.handle.net/10576/22425
الملخصIn this paper, we consider a class of parabolic partial differential equations with a time delay. The first model equation is the mixed problems for scalar generalized diffusion equation with a delay, whereas the second model equation is a delayed reaction-diffusion equation. Both of these models have inherent complex nature because of which their analytical solutions are hardly obtainable, and therefore, one has to seek numerical treatments for their approximate solutions. To this end, we develop a fitted Galerkin spectral method for solving this problem. We derive optimal error estimates based on weak formulations for the fully discrete problems. Some numerical experiments are also provided at the end. Copyright 2015 John Wiley & Sons, Ltd. Copyright 2015 John Wiley & Sons, Ltd.
اللغةen
الناشرJohn Wiley and Sons Ltd
الموضوعDiffusion
Diffusion in liquids
Galerkin methods
Linear equations
Partial differential equations
Spectroscopy
Time delay
Convergence analysis
Error estimates
Galerkin spectral method
Generalized diffusion equation
Numerical experiments
Optimal error estimate
Parabolic partial differential equations
Reaction diffusion equations
Problem solving
العنوانFitted Galerkin spectral method to solve delay partial differential equations
النوعArticle
الصفحات3102-3115
رقم العدد11
رقم المجلد39
dc.accessType Abstract Only


الملفات في هذه التسجيلة

الملفاتالحجمالصيغةالعرض

لا توجد ملفات لها صلة بهذه التسجيلة.

هذه التسجيلة تظهر في المجموعات التالية

عرض بسيط للتسجيلة