Epitaxial Growth of Lattice-Mismatched Core-Shell TiO2@MoS2 for Enhanced Lithium-Ion Storage
التاريخ
2016المؤلف
Dai, RuiZhang, Anqi
Pan, Zhichang
Al-Enizi, Abdullah M.
Elzatahry, Ahmed A.
Hu, Linfeng
Zheng, Gengfeng
...show more authors ...show less authors
البيانات الوصفية
عرض كامل للتسجيلةالملخص
Core-shell structured nanohybrids are currently of significant interest due to their synergetic properties and enhanced performances. However, the restriction of lattice mismatch remains a severe obstacle for heterogrowth of various core-shells with two distinct crystal structures. Herein, a controlled synthesis of lattice-mismatched core-shell TiO2@MoS2 nano-onion heterostructures is successfully developed, using unilamellar Ti0.87O2 nanosheets as the starting material and the subsequent epitaxial growth of MoS2 on TiO2. The formation of these core-shell nano-onions is attributed to an amorphous layer-induced heterogrowth mechanism. The number of MoS2 layers can be well tuned from few to over ten layers, enabling layer-dependent synergistic effects. The core-shell TiO2@MoS2 nano-onion heterostructures exhibit significantly enhanced energy storage performance as lithium-ion battery anodes. The approach has also been extended to other lattice-mismatched systems such as TiO2@MoSe2, thus suggesting a new strategy for the growth of well-designed lattice-mismatched core-shell structures. A controlled synthesis of lattice-mismatched core-shell TiO2@MoS2 nano-onion heterostructures is developed, using unilamellar Ti0.87O2 nanosheets as the starting material and the subsequent epitaxial growth of MoS2 on TiO2. The formation of these core-shell nano-onions is attributed to an amorphous layer-induced heterogrowth mechanism. The core-shell TiO2@MoS2 nano-onion heterostructures exhibit significantly enhanced energy storage performance as lithium-ion battery anodes. 2016 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
المجموعات
- علم وتكنولوجيا المواد [310 items ]