عرض بسيط للتسجيلة

المؤلفErol, Baris
المؤلفAmin, Moeness
المؤلفAhmad, Fauzia
المؤلفBoashash, B.
تاريخ الإتاحة2021-09-05T05:40:16Z
تاريخ النشر2016
اسم المنشورProceedings of SPIE - The International Society for Optical Engineering
المصدرScopus
الرقم المعياري الدولي للكتاب0277786X
معرّف المصادر الموحدhttp://dx.doi.org/10.1117/12.2224984
معرّف المصادر الموحدhttp://hdl.handle.net/10576/22708
الملخصFalls are a major cause of accidents in elderly people. Even simple falls can lead to severe injuries, and sometimes result in death. Doppler fall detection has drawn much attention in recent years. Micro-Doppler signatures play an important role for the Doppler-based radar systems. Numerous studies have demonstrated the offerings of micro-Doppler characteristics for fall detection. In this respect, a plethora of micro-Doppler signature features have been proposed, including those stemming from speech recognition and wavelet decomposition. In this work, we consider four different sets of features for fall detection. These can be categorized as spectrogram based features, wavelet based features, mel-frequency cepstrum coefficients, and power burst curve features. Support vector machine is employed as the classifier. Performance of the respective fall detectors is investigated using real data obtained with the same radar operating resources and under identical sensing conditions. For the considered data, the spectrogram based feature set is shown to provide superior fall detection performance. 2016 SPIE.
اللغةen
الناشرSPIE
الموضوعCepstrum
Fall detection
Micro-Doppler signatures
Support vector machine
Wavelets
العنوانRadar fall detectors: A comparison
النوعConference
رقم المجلد9829
dc.accessType Abstract Only


الملفات في هذه التسجيلة

الملفاتالحجمالصيغةالعرض

لا توجد ملفات لها صلة بهذه التسجيلة.

هذه التسجيلة تظهر في المجموعات التالية

عرض بسيط للتسجيلة