Optimization and Prediction of Mechanical and Thermal Properties of Graphene/LLDPE Nanocomposites by Using Artificial Neural Networks
Author | Khanam, P. Noorunnisa |
Author | AlMaadeed, MA |
Author | AlMaadeed, Sumaaya |
Author | Kunhoth, Suchithra |
Author | Ouederni, M. |
Author | Sun, D. |
Author | Hamilton, A. |
Author | Jones, Eileen Harkin |
Author | Mayoral, Beatriz |
Available date | 2021-09-07T06:16:22Z |
Publication Date | 2016 |
Publication Name | International Journal of Polymer Science |
Resource | Scopus |
ISSN | 16879422 |
Abstract | The focus of this work is to develop the knowledge of prediction of the physical and chemical properties of processed linear low density polyethylene (LLDPE)/graphene nanoplatelets composites. Composites made from LLDPE reinforced with 1, 2, 4, 6, 8, and 10 wt% grade C graphene nanoplatelets (C-GNP) were processed in a twin screw extruder with three different screw speeds and feeder speeds (50, 100, and 150 rpm). These applied conditions are used to optimize the following properties: thermal conductivity, crystallization temperature, degradation temperature, and tensile strength while prediction of these properties was done through artificial neural network (ANN). The three first properties increased with increase in both screw speed and C-GNP content. The tensile strength reached a maximum value at 4 wt% C-GNP and a speed of 150 rpm as this represented the optimum condition for the stress transfer through the amorphous chains of the matrix to the C-GNP. ANN can be confidently used as a tool to predict the above material properties before investing in development programs and actual manufacturing, thus significantly saving money, time, and effort. 2016 P. Noorunnisa Khanam et al. |
Language | en |
Publisher | Hindawi Publishing Corporation |
Subject | Graphite Polypropylenes Gross National Product |
Type | Article |
Volume Number | 2016 |
Files in this item
This item appears in the following Collection(s)
-
Center for Advanced Materials Research [1378 items ]
-
Computer Science & Engineering [2402 items ]
-
Materials Science & Technology [310 items ]