• English
    • العربية
  • العربية
  • Login
  • QU
  • QU Library
  •  Home
  • Communities & Collections
  • Help
    • Item Submission
    • Publisher policies
    • User guides
    • FAQs
  • About QSpace
    • Vision & Mission
View Item 
  •   Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Research Units
  • KINDI Center for Computing Research
  • Interdisciplinary & Smart Design
  • View Item
  • Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Research Units
  • KINDI Center for Computing Research
  • Interdisciplinary & Smart Design
  • View Item
  •      
  •  
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Skyline Discovery and Composition of Multi-Cloud Mashup Services

    Thumbnail
    Date
    2016
    Author
    Zhang, Fan
    Hwang, Kai
    Khan, Samee U.
    Malluhi, Qutaibah M.
    Metadata
    Show full item record
    Abstract
    A cloud mashup is composed of multiple services with shared datasets and integrated functionalities. For example, the elastic compute cloud (EC2) provided by Amazon Web Service (AWS), the authentication and authorization services provided by Facebook, and the Map service provided by Google can all be mashed up to deliver real-time, personalized driving route recommendation service. To discover qualified services and compose them with guaranteed quality of service (QoS), we propose an integrated skyline query processing method for building up cloud mashup applications. We use a similarity test to achieve optimal localized skyline. This mashup method scales well with the growing number of cloud sites involved in the mashup applications. Faster skyline selection, reduced composition time, dataset sharing, and resources integration assure the QoS over multiple clouds. We experiment with the quality of web service (QWS) benchmark over 10,000 web services along six QoS dimensions. By utilizing block-elimination, data-space partitioning, and service similarity pruning, the skyline process is shortened by three times, when compared with two state-of-the-art methods.
    DOI/handle
    http://dx.doi.org/10.1109/TSC.2015.2449302
    http://hdl.handle.net/10576/22910
    Collections
    • Interdisciplinary & Smart Design [‎32‎ items ]

    entitlement


    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Home

    Submit your QU affiliated work

    Browse

    All of Digital Hub
      Communities & Collections Publication Date Author Title Subject Type Language Publisher
    This Collection
      Publication Date Author Title Subject Type Language Publisher

    My Account

    Login

    Statistics

    View Usage Statistics

    About QSpace

    Vision & Mission

    Help

    Item Submission Publisher policiesUser guides FAQs

    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Video