• English
    • العربية
  • العربية
  • Login
  • QU
  • QU Library
  •  Home
  • Communities & Collections
  • Help
    • Item Submission
    • Publisher policies
    • User guides
    • FAQs
  • About QSpace
    • Vision & Mission
View Item 
  •   Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Engineering
  • Chemical Engineering
  • View Item
  • Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Engineering
  • Chemical Engineering
  • View Item
  •      
  •  
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Electrocatalytic conversion of CO2 over in-situ grown Cu microstructures on Cu and Zn foils

    Thumbnail
    View/Open
    Publisher version (You have accessOpen AccessIcon)
    Publisher version (Check access options)
    Check access options
    Electrocatalytic conversion of CO2 over in-situ grown Cu microstructures on Cu and Zn foils.pdf (6.583Mb)
    Date
    2021-11
    Author
    Ashok, Anchu
    Kumar, Anand
    Ali Saleh Saad, Mohammed
    J. Al-Marri, Mohammed
    Metadata
    Show full item record
    Abstract
    Electrochemical conversion of carbon dioxide to value added multi-carbon products is of great importance and a promising approach to mitigate greenhouse gases. In this work, we report the fabrication of electrodes by depositing Cu over the metallic foils of Cu and Zn, which show high faradic efficiency for the conversion of CO2 to formic acid, acetate, and methanol. The morphology, phase and oxidation state of the Cu were different on the two foils while maintaining the same synthesis steps. The Cu particles embedded on Cu foil (Cu/Cu-foil) are in 3D cuboids form with flat and smooth faces, whereas Cu on Zn foil (Cu/Zn-foil) emerge in the shape of 3D flowers with the club of Cu microspikes grown perpendicularly from a root. For the electrocatalytic conversion of CO2, the Cu/Cu-foil shows a high selectivity for formic acid and ethyl acetate with the highest faradaic efficiency of 78 % at −0.3 V vs RHE, and 64 % at −1.0 V (vs RHE) for the two products, respectively. In contrast, the Cu/Zn-foil displays a high selectivity towards methanol, with the highest faradaic efficiency of 48 % at −1.0 V vs RHE, indicating that the product selectivity can be easily modulated by changing the metallic foil on which the Cu particles are deposited. Both the electrodes, Cu/Cu-foil and Cu/Zn-foil, show long-term stable performance while maintaining the selectivity of the products during CO2 electrocatalytic conversion.
    DOI/handle
    http://dx.doi.org/10.1016/j.jcou.2021.101749
    http://hdl.handle.net/10576/24822
    Collections
    • Chemical Engineering [‎1196‎ items ]

    entitlement


    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Home

    Submit your QU affiliated work

    Browse

    All of Digital Hub
      Communities & Collections Publication Date Author Title Subject Type Language Publisher
    This Collection
      Publication Date Author Title Subject Type Language Publisher

    My Account

    Login

    Statistics

    View Usage Statistics

    About QSpace

    Vision & Mission

    Help

    Item Submission Publisher policiesUser guides FAQs

    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Video