• English
    • العربية
  • العربية
  • Login
  • QU
  • QU Library
  •  Home
  • Communities & Collections
  • Help
    • Item Submission
    • Publisher policies
    • User guides
    • FAQs
  • About QSpace
    • Vision & Mission
View Item 
  •   Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Research Units
  • Center for Advanced Materials
  • Center for Advanced Materials Research
  • View Item
  • Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Research Units
  • Center for Advanced Materials
  • Center for Advanced Materials Research
  • View Item
  •      
  •  
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Mesoporous silica filled smart super oleophilic fibers of triblock copolymer nanocomposites for oil absorption applications

    Thumbnail
    View/Open
    Elgawady2020_Article_MesoporousSilicaFilledSmartSup.pdf (2.678Mb)
    Date
    2020
    Author
    Elgawady Y.
    Ponnamma D.
    Adham S.
    Al-Maas M.
    Ammar A.
    Alamgir K.
    Al-Maadeed M.A.A.
    Hassan M.K.
    ...show more authors ...show less authors
    Metadata
    Show full item record
    Abstract
    Super oleophilic fibers of styrene-isoprene-styrene (SIS) block copolymer/mesoporous silica (MS) nanocomposites are fabricated by electrospinning, and their oil absorption efficiency is monitored by following two different approaches. The first way is by using the fibers as tubular packing materials for oil absorption, whereas the second approach uses the fibers as filtration membrane after deposition on the commercial polyethersulfone (PES) support. All composites are made by adding inorganic MS in different concentrations (2, 4, and 7 wt.%) to SIS block copolymer. The addition of MS increases the fiber diameters and leads to enlarged and bead-like appearances, especially at higher filler concentrations. The oil absorption efficiency is explored based on the oil absorption capacity of the samples as well as with the gravity-driven oil filtration experiments. The best oil absorption efficiency is achieved by the 4 wt.% SIS-MS composite (150% higher oil absorption capacity compared to the neat SIS), and it is used to spin on the PES mechanical support of different pore sizes (0.2 and 8). Ultrafiltration tests conducted on those coated membranes observe improved oil rejection performance as the fibrous SIS-MS are layered on the commercial mechanical support.
    DOI/handle
    http://dx.doi.org/10.1007/s42247-020-00111-3
    http://hdl.handle.net/10576/27456
    Collections
    • Center for Advanced Materials Research [‎1485‎ items ]
    • Materials Science & Technology [‎316‎ items ]

    entitlement


    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Home

    Submit your QU affiliated work

    Browse

    All of Digital Hub
      Communities & Collections Publication Date Author Title Subject Type Language Publisher
    This Collection
      Publication Date Author Title Subject Type Language Publisher

    My Account

    Login

    Statistics

    View Usage Statistics

    About QSpace

    Vision & Mission

    Help

    Item Submission Publisher policiesUser guides FAQs

    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Video