Show simple item record

AuthorMelavanki, R.
AuthorKusanur, R.
AuthorSadasivuni, Kishor Kumar
AuthorSingh, D.
AuthorPatil, N.R.
Available date2022-03-23T06:35:53Z
Publication Date2020
Publication NameHeliyon
ResourceScopus
Identifierhttp://dx.doi.org/10.1016/j.heliyon.2020.e05081
URIhttp://hdl.handle.net/10576/28628
AbstractBinding interactions of boronic acid derivatives viz. 2-Methylphenylboronic acid (B1) and 3-Methoxyphenylboronic acid (B2) with mono saccharides (arabinose, fructose and galactose) and disaccharides (sucrose, lactose and maltose) in aqueous condition at pH 7.4 by means of fluorescence spectroscopy is reported in the present investigation. Sugar sensing as well as continuous glucose monitoring (CGM) plays a significant role in diabetes regulation. Sugar sensors mediated through enzymes have their own drawbacks, which led to encouragement to search for designing new sensors through alternate approaches. Among many, fluorescence-based sensors are drawing more attention. Boronic acid-based fluorescence sensors have the capacity to bind reversibly with diols, which makes their demand high in applications. Addition of sugar reduces fluorescence intensities. Change in intensities is associated to cleavage of intermolecular hydrogen bonding which leads in reduced stability of boronate ester. Lineweaver-Burk and Benesi-Hildebrand equation is used for analysing data. Mono sugars are estimated to have higher binding constants. Mutarotation leads to structural changes in saccharides which play a key role in binding interactions. Sugars in furanose form are found to be highly favoured for binding. Molecular docking of B1 and B2 with proteins with PDB ID: 2IPL and 2IPM being periplasmic was done with the help of Schrodinger Maestro 11.2 version. GLIDE scores terms are used for expressing binding affinity.
Languageen
PublisherElsevier Ltd
SubjectAnalytical chemistry
Binding constant
Boronic acids
Dissociation constant
Fluorescent intensity
Food analysis
Food science
Glucose level
Sugars
TitleInvestigation of interaction between boronic acids and sugar: effect of structural change of sugars on binding affinity using steady state and time resolved fluorescence spectroscopy and molecular docking
TypeArticle
Issue Number10
Volume Number6
dc.accessType Open Access


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record