Auto-nahl: A neural network approach for condition-based maintenance of complex industrial systems
Date
2021Metadata
Show full item recordAbstract
Nowadays, machine learning has emerged as a promising alternative for condition monitoring of industrial processes, making it indispensable for maintenance planning. Such a learning model is able to assess health states in real time provided that both training and testing samples are complete and have the same probability distribution. However, it is rare and difficult in practical applications to meet these requirements due to the continuous change in working conditions. Besides, conventional hyperparameters tuning via grid search or manual tuning requires a lot of human intervention and becomes inflexible for users. Two objectives are targeted in this work. In an attempt to remedy the data distribution mismatch issue, we firstly introduce a feature extraction and selection approach built upon correlation analysis and dimensionality reduction. Secondly, to diminish human intervention burdens, we propose an Automatic artificial Neural network with an Augmented Hidden Layer (Auto-NAHL) for the classification of health states. Within the designed network, it is worthy to mention that the novelty of the implemented neural architecture is attributed to the new multiple feature mappings of the inputs, where such configuration allows the hidden layer to learn multiple representations from several random linear mappings and produce a single final efficient representation. Hyperparameters tuning including the network architecture, is fully automated by incorporating Particle Swarm Optimization (PSO) technique. The designed learning process is evaluated on a complex industrial plant as well as various classification problems. Based on the obtained results, it can be claimed that our proposal yields better response to new hidden representations by obtaining a higher approximation compared to some previous works.
Collections
- Electrical Engineering [2647 items ]
Related items
Showing items related by title, author, creator and subject.
-
Self-organized Operational Neural Networks with Generative Neurons
Kiranyaz, Mustafa Serkan; Malik J.; Abdallah H.B.; Ince T.; Iosifidis A.; Gabbouj M.... more authors ... less authors ( Elsevier Ltd , 2021 , Article)Operational Neural Networks (ONNs) have recently been proposed to address the well-known limitations and drawbacks of conventional Convolutional Neural Networks (CNNs) such as network homogeneity with the sole linear neuron ... -
Wireless Network Slice Assignment with Incremental Random Vector Functional Link Network
He, Yu Lin; Ye, Xuan; Cui, Laizhong; Fournier-Viger, Philippe; Luo, Chengwen; Huang, Joshua Zhexue; Suganthan, Ponnuthurai N.... more authors ... less authors ( IEEE Computer Society , 2022 , Article)This paper presents an artificial intelligence-assisted network slice prediction method, which utilizes a novel incremental random vector functional link (IRVFL) network to deal with the wireless network slice assignment ... -
A novel multi-hop body-To-body routing protocol for disaster and emergency networks
Ben Arbia, Dhafer; Alam, Muhammad Mahtab; Attia, Rabah; Ben Hamida, Elye ( Institute of Electrical and Electronics Engineers Inc. , 2016 , Conference Paper)In this paper, a new multi-hop routing protocol (called ORACE-Net) for disaster and emergency networks is proposed. The proposed hierarchical protocol creates an ad-hoc network through body-To-body (B2B) communication ...