Systematic laboratory approach to produce Mg-rich carbonates at low temperature
Author | Al Disi, Zulfa Ali |
Author | Zouari, Nabil |
Author | Attia, Essam |
Author | Al-Asali, Mazen |
Author | Al Saad Al-Kuwari, Hamad |
Author | Sadooni, Fadhil |
Author | Dittrich, Maria |
Author | Bontognali, Tomaso R.R. |
Available date | 2022-03-30T06:09:13Z |
Publication Date | 2021-11-10 |
Publication Name | RSC Advances |
Identifier | http://dx.doi.org/10.1039/d1ra06206a |
Citation | Al Disi, Z. A., Zouari, N., Attia, E., Al-Asali, M., Al-Kuwari, H. A. S., Sadooni, F., ... & Bontognali, T. R. (2021). Systematic laboratory approach to produce Mg-rich carbonates at low temperature. RSC Advances, 11(59), 37029-37039. |
Abstract | Dolomite is a common Mg-rich carbonate in the geological record, but the mechanism of its formation remains unclear. At low temperature, the incorporation of magnesium ions into the carbonate minerals necessary to form dolomite is kinetically inhibited. Over the decades, several factors that possibly allow for overcoming this kinetic barrier have been proposed, and their effectiveness debated. Here, we present the results of a large number of laboratory precipitation experiments that have been designed to identify and compare the factors that promote the formation of Mg-rich carbonates. Under the tested conditions, the most interesting observations include: (1) from solutions that mimic evaporitic seawater, the maximum mol% of Mg incorporated in high Mg calcite is 35, (2) carbonates with a mol% of Mg above 40 were obtained exclusively in the presence of organic molecules, (3) no correlation was observed between the charge of the organic molecules and the incorporation of Mg, (4) the mode (i.e., slow vs. fast mixing) used to add carbonate to the solution obtaining supersaturation has a significant impact on the forming mineral phase (aragonite vs. nesquehonite vs. high Mg calcite) and its Mg content. These findings allow for a more informed evaluation of the existing models for dolomite formation, which are based on the study of natural environments and ancient sedimentary sequences. |
Sponsor | This work was made possible by the grants NPRP10-0214-170462 and NPRP13S-0207-200291 from the Qatar National Research Fund (a member of the Qatar Foundation). |
Language | en |
Publisher | Royal Society of Chemistry |
Subject | Sabkha Carbonates Organic molecules High magnesium calcite Protodolomite Dolomite |
Type | Article |
Pagination | 37029-37039 |
Issue Number | 59 |
Volume Number | 11 |
ESSN | 2046-2069 |
Files in this item
This item appears in the following Collection(s)
-
Atmospheric Science Cluster [38 items ]
-
Biological & Environmental Sciences [919 items ]
-
Central Laboratories Unit Research [101 items ]