Health monitoring and degradation prognostics in gas turbine engines using dynamic neural networks
الملخص
In this paper two artificially intelligent methodologies are proposed and developed for degradation prognosis and health monitoring of gas turbine engines. Our objective is to predict the degradation trends by studying their effects on the engine measurable parameters, such as the temperature, at critical points of the gas turbine engine. The first prognostic scheme is based on a recurrent neural network (RNN) architecture. This architecture enables ONE to learn the engine degradations from the available measurable data. The second prognostic scheme is based on a nonlinear auto-regressive with exogenous input (NARX) neural network architecture. It is shown that this network can be trained with fewer data points and the prediction errors are lower as compared to the RNN architecture. To manage prognostic and prediction uncertainties upper and lower threshold bounds are defined and obtained. Various scenarios and case studies are presented to illustrate and demonstrate the effectiveness of our proposed neural network-based prognostic approaches. To evaluate and compare the prediction results between our two proposed neural network schemes, a metric known as the normalized Akaike information criterion (NAIC) is utilized. A smaller NAIC shows a better, a more accurate and a more effective prediction outcome. The NAIC values are obtained for each case and the networks are compared relatively with one another. Copyright 2015 by ASME.
المجموعات
- الهندسة الكهربائية [2649 items ]
وثائق ذات صلة
عرض الوثائق المتصلة بواسطة: العنوان، المؤلف، المنشئ والموضوع.
-
Self-organized Operational Neural Networks with Generative Neurons
Kiranyaz, Mustafa Serkan; Malik J.; Abdallah H.B.; Ince T.; Iosifidis A.; Gabbouj M.... more authors ... less authors ( Elsevier Ltd , 2021 , Article)Operational Neural Networks (ONNs) have recently been proposed to address the well-known limitations and drawbacks of conventional Convolutional Neural Networks (CNNs) such as network homogeneity with the sole linear neuron ... -
Real-Time Glaucoma Detection from Digital Fundus Images Using Self-ONNs
Devecioglu O.C.; Malik J.; Ince T.; Kiranyaz, Mustafa Serkan; Atalay E.; Gabbouj M.... more authors ... less authors ( Institute of Electrical and Electronics Engineers Inc. , 2021 , Article)Glaucoma leads to permanent vision disability by damaging the optical nerve that transmits visual images to the brain. The fact that glaucoma does not show any symptoms as it progresses and cannot be stopped at the later ... -
Locality Sensitive Deep Learning for Detection and Classification of Nuclei in Routine Colon Cancer Histology Images
Sirinukunwattana, Korsuk; Raza, Shan E Ahmed; Tsang, Yee-Wah; Snead, David R. J.; Cree, Ian A.; Rajpoot, Nasir M.... more authors ... less authors ( Institute of Electrical and Electronics Engineers Inc. , 2016 , Article)Detection and classification of cell nuclei in histopathology images of cancerous tissue stained with the standard hematoxylin and eosin stain is a challenging task due to cellular heterogeneity. Deep learning approaches ...