Show simple item record

AuthorVatani, A.
AuthorKhorasani, K.
AuthorMeskin, Nader
Available date2022-04-14T08:45:43Z
Publication Date2015
Publication NameProceedings of the ASME Turbo Expo
ResourceScopus
Identifierhttp://dx.doi.org/10.1115/GT2015-44101
URIhttp://hdl.handle.net/10576/29811
AbstractIn this paper two artificially intelligent methodologies are proposed and developed for degradation prognosis and health monitoring of gas turbine engines. Our objective is to predict the degradation trends by studying their effects on the engine measurable parameters, such as the temperature, at critical points of the gas turbine engine. The first prognostic scheme is based on a recurrent neural network (RNN) architecture. This architecture enables ONE to learn the engine degradations from the available measurable data. The second prognostic scheme is based on a nonlinear auto-regressive with exogenous input (NARX) neural network architecture. It is shown that this network can be trained with fewer data points and the prediction errors are lower as compared to the RNN architecture. To manage prognostic and prediction uncertainties upper and lower threshold bounds are defined and obtained. Various scenarios and case studies are presented to illustrate and demonstrate the effectiveness of our proposed neural network-based prognostic approaches. To evaluate and compare the prediction results between our two proposed neural network schemes, a metric known as the normalized Akaike information criterion (NAIC) is utilized. A smaller NAIC shows a better, a more accurate and a more effective prediction outcome. The NAIC values are obtained for each case and the networks are compared relatively with one another. Copyright 2015 by ASME.
SponsorQatar National Research Fund
Languageen
PublisherAmerican Society of Mechanical Engineers (ASME)
SubjectEngines
Forecasting
Gas turbines
Neural networks
Recurrent neural networks
Akaike information criterion
Dynamic neural networks
Health monitoring
Measurable parameters
Prediction errors
Prediction uncertainty
Prognostic approach
Recurrent neural network (RNN)
Network architecture
TitleHealth monitoring and degradation prognostics in gas turbine engines using dynamic neural networks
TypeConference Paper
Volume Number6
dc.accessType Abstract Only


Files in this item

FilesSizeFormatView

There are no files associated with this item.

This item appears in the following Collection(s)

Show simple item record