عرض بسيط للتسجيلة

المؤلفMeskin, Nader
المؤلفNounou, H.
المؤلفNounou, M.
المؤلفDatta, A.
تاريخ الإتاحة2022-04-14T08:45:45Z
تاريخ النشر2013
اسم المنشورIEEE/ACM Transactions on Computational Biology and Bioinformatics
المصدرScopus
المعرّفhttp://dx.doi.org/10.1109/TCBB.2013.19
معرّف المصادر الموحدhttp://hdl.handle.net/10576/29826
الملخصRecent advances in high-throughput technologies for biological data acquisition have spurred a broad interest in the construction of mathematical models for biological phenomena. The development of such mathematical models relies on the estimation of unknown parameters of the system using the time-course profiles of different metabolites in the system. One of the main challenges in the parameter estimation of biological phenomena is the fact that the number of unknown parameters is much more than the number of metabolites in the system. Moreover, the available metabolite measurements are corrupted by noise. In this paper, a new parameter estimation algorithm is developed based on the stochastic estimation framework for nonlinear systems, namely the unscented Kalman filter (UKF). A new iterative UKF algorithm with covariance resetting is developed in which the UKF algorithm is applied iteratively to the available noisy time profiles of the metabolites. The proposed estimation algorithm is applied to noisy time-course data synthetically produced from a generic branched pathway as well as real time-course profile for the Cad system of E. coli. The simulation results demonstrate the effectiveness of the proposed scheme. 2004-2012 IEEE.
اللغةen
الناشرIEEE
الموضوعBiological phenomena
Convergence
Noise
Noise measurements
S-systems
Unscented Kalman Filter
Algorithms
Biology
Biomolecules
Escherichia coli
Estimation
Mathematical models
Metabolites
Nonlinear filtering
Parameter estimation
Iterative methods
Escherichia coli protein
algorithm
biological model
biology
Escherichia coli
metabolism
nonlinear system
physiological stress
physiology
procedures
signal noise ratio
article
biology
methodology
Algorithms
Computational Biology
Escherichia coli
Escherichia coli Proteins
Models, Biological
Nonlinear Dynamics
Signal-To-Noise Ratio
Stress, Physiological
Algorithms
Computational Biology
Escherichia coli
Escherichia coli Proteins
Models, Biological
Nonlinear Dynamics
Signal-To-Noise Ratio
Stress, Physiological
العنوانParameter estimation of biological phenomena: An unscented kalman filter approach
النوعArticle
الصفحات537-543
رقم العدد2
رقم المجلد10
dc.accessType Abstract Only


الملفات في هذه التسجيلة

الملفاتالحجمالصيغةالعرض

لا توجد ملفات لها صلة بهذه التسجيلة.

هذه التسجيلة تظهر في المجموعات التالية

عرض بسيط للتسجيلة