Multimodal deep learning approach for Joint EEG-EMG Data compression and classification
Author | Ben Said A. |
Author | Mohamed A. |
Author | Elfouly T. |
Author | Harras K. |
Author | Wang Z.J. |
Available date | 2022-04-21T08:58:28Z |
Publication Date | 2017 |
Publication Name | IEEE Wireless Communications and Networking Conference, WCNC |
Resource | Scopus |
Identifier | http://dx.doi.org/10.1109/WCNC.2017.7925709 |
Abstract | In this paper, we present a joint compression and classification approach of EEG and EMG signals using a deep learning approach. Specifically, we build our system based on the deep autoencoder architecture which is designed not only to extract discriminant features in the multimodal data representation but also to reconstruct the data from the latent representation using encoder-decoder layers. Since autoencoder can be seen as a compression approach, we extend it to handle multimodal data at the encoder layer, reconstructed and retrieved at the decoder layer. We show through experimental results, that exploiting both multimodal data intercorellation and intracorellation 1) Significantly reduces signal distortion particularly for high compression levels 2) Achieves better accuracy in classifying EEG and EMG signals recorded and labeled according to the sentiments of the volunteer. 2017 IEEE. |
Language | en |
Publisher | Institute of Electrical and Electronics Engineers Inc. |
Subject | Classification (of information) Compaction Data compression Decoding Deep learning Learning systems mHealth Signal encoding Wireless telecommunication systems Auto encoders Compression approach Encoder-decoder High compressions Joint compression and classification Learning approach Multi-modal data Show through Biomedical signal processing |
Type | Conference Paper |
Files in this item
Files | Size | Format | View |
---|---|---|---|
There are no files associated with this item. |
This item appears in the following Collection(s)
-
Computer Science & Engineering [2402 items ]