• English
    • العربية
  • العربية
  • Login
  • QU
  • QU Library
  •  Home
  • Communities & Collections
  • Help
    • Item Submission
    • Publisher policies
    • User guides
    • FAQs
  • About QSpace
    • Vision & Mission
View Item 
  •   Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Engineering
  • Computer Science & Engineering
  • View Item
  • Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Engineering
  • Computer Science & Engineering
  • View Item
  •      
  •  
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    A cooperative Q-learning approach for online power allocation in femtocell networks

    Thumbnail
    Date
    2013
    Author
    Saad H.
    Mohamed A.
    Elbatt T.
    Metadata
    Show full item record
    Abstract
    In this paper, we address the problem of distributed interference management of cognitive femtocells that share the same frequency range with macrocells using distributed multiagent Q-learning. We formulate and solve three problems representing three different Q-learning algorithms: namely, centralized, femto-based distributed and subcarrier-based distributed power control using Q-learning (CPC-Q, FBDPC-Q and SBDPCQ). CPC-Q, although not of practical interest, characterizes the global optimum. Each of FBDPC-Q and SBDPC-Q works in two different learning paradigms: Independent (IL) and Cooperative (CL). The former is considered the simplest form for applying Q-learning in multi-agent scenarios, where all the femtocells learn independently. The latter is the proposed scheme in which femtocells share partial information during the learning process in order to strike a balance between practical relevance and performance. In terms of performance, the simulation results showed that the CL paradigm outperforms the IL paradigm and achieves an aggregate femtocells capacity that is very close to the optimal one. For the practical relevance issue, we evaluate the robustness and scalability of SBDPC-Q, in real time, by deploying new femtocells in the system during the learning process, where we showed that SBDPC-Q in the CL paradigm is scalable to large number of femtocells and more robust to the network dynamics compared to the IL paradigm. Copyright 2013 by the Institute of Electrical and Electronic Engineers, Inc.
    DOI/handle
    http://dx.doi.org/10.1109/VTCFall.2013.6692027
    http://hdl.handle.net/10576/30159
    Collections
    • Computer Science & Engineering [‎2428‎ items ]

    entitlement

    Related items

    Showing items related by title, author, creator and subject.

    • Thumbnail

      Machine Learning for Healthcare Wearable Devices: The Big Picture 

      Sabry, Farida; Eltaras, Tamer; Labda, Wadha; Alzoubi, Khawla; Malluhi, Qutaibah ( John Wiley and Sons Inc , 2022 , Article Review)
      Using artificial intelligence and machine learning techniques in healthcare applications has been actively researched over the last few years. It holds promising opportunities as it is used to track human activities and ...
    • Thumbnail

      A cooperative Q-learning approach for distributed resource allocation in multi-user femtocell networks 

      Saad H.; Mohamed A.; El Batt T. ( Institute of Electrical and Electronics Engineers Inc. , 2016 , Conference)
      This paper studies distributed interference management for femtocells that share the same frequency band with macrocells. We propose a multi-agent learning technique based on distributed Q-learning, called subcarrier-based ...
    • Thumbnail

      A Weighted Machine Learning-Based Attacks Classification to Alleviating Class Imbalance 

      Chkirbene Z.; Erbad A.; Hamila R.; Gouissem A.; Mohamed A.; Guizani M.; Hamdi M.... more authors ... less authors ( Institute of Electrical and Electronics Engineers Inc. , 2021 , Article)
      The Industrial Internet of Things (IIoT) has become very popular in recent years. However, IIoT is still an attractive and vulnerable target for attackers to exploit and experiment with different types of attacks. To ...

    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Home

    Submit your QU affiliated work

    Browse

    All of Digital Hub
      Communities & Collections Publication Date Author Title Subject Type Language Publisher
    This Collection
      Publication Date Author Title Subject Type Language Publisher

    My Account

    Login

    Statistics

    View Usage Statistics

    About QSpace

    Vision & Mission

    Help

    Item Submission Publisher policiesUser guides FAQs

    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Video