Bayesian network based heuristic for energy aware EEG signal classification
الملخص
A major challenge in the current research of wireless electroencephalograph (EEG) sensor-based medical or Brain Computer Interface applications is how to classify EEG signals as accurately and energy efficient as possible. One way to achieve this objective is to select a subset of the most discriminant EEG channels during the signal classification. In this paper, we propose a Bayesian network based-heuristic channel selection approach. First, the EEG channels are ranked based on their task discriminant capabilities. The highest task-related channels are chosen as an initial set. Subsequently, this set is submitted to a Bayesian network to calculate the task weights. Based on these weights, the heuristic algorithm is either selects an appropriate channel or ends the selection process. The proposed technique has been applied on two classification problems. It achieved 92% and 93.39% classification accuracies, utilizing only 6 out of 14 channels and 13 out of 64 channels, respectively. Springer International Publishing 2013.
المجموعات
- علوم وهندسة الحاسب [2402 items ]
وثائق ذات صلة
عرض الوثائق المتصلة بواسطة: العنوان، المؤلف، المنشئ والموضوع.
-
Multifrequency Polsar Image Classification Using Dual-Band 1D Convolutional Neural Networks
Ahishali M.; Kiranyaz, Mustafa Serkan; Ince T.; Gabbouj M. ( Institute of Electrical and Electronics Engineers Inc. , 2020 , Conference)In this work, we propose a novel classification approach based on dual-band one-dimensional Convolutional Neural Networks (1D-CNNs) for classification of multifrequency polarimetric SAR (PolSAR) data. The proposed approach ... -
Convolutional Sparse Support Estimator-Based COVID-19 Recognition from X-Ray Images
Yamac M.; Ahishali M.; Degerli A.; Kiranyaz, Mustafa Serkan; Chowdhury M.E.H.; Gabbouj M.... more authors ... less authors ( Institute of Electrical and Electronics Engineers Inc. , 2021 , Article)Coronavirus disease (COVID-19) has been the main agenda of the whole world ever since it came into sight. X-ray imaging is a common and easily accessible tool that has great potential for COVID-19 diagnosis and prognosis. ... -
Performance Comparison of Learned vs. Engineered Features for Polarimetric SAR Terrain Classification
Ahishali M.; Ince T.; Kiranyaz, Mustafa Serkan; Gabbouj M. ( Institute of Electrical and Electronics Engineers Inc. , 2019 , Conference)In this work, we propose to use learned features for terrain classification of Polarimetric Synthetic Aperture Radar (PolSAR) images. In the proposed classification framework, the learned features are extracted from sliding ...