عرض بسيط للتسجيلة

المؤلفAbualsaud K.
المؤلفMahmuddin M.
المؤلفHussein R.
المؤلفMohamed A.
تاريخ الإتاحة2022-04-21T08:58:34Z
تاريخ النشر2013
اسم المنشور2013 9th International Wireless Communications and Mobile Computing Conference, IWCMC 2013
المصدرScopus
المعرّفhttp://dx.doi.org/10.1109/IWCMC.2013.6583564
معرّف المصادر الموحدhttp://hdl.handle.net/10576/30162
الملخصBrain is the most important part in the human body controlling muscles and nerves; Electroencephalogram (EEG) signals record brain electric activities. EEG signals capture important information pertinent to different physiological brain states. In this paper, we propose an efficient framework for evaluating the power-accuracy trade-off for EEG-based compressive sensing and classification techniques in the context of epileptic seizure detection in wireless tele-monitoring. The framework incorporates compressive sensing-based energy-efficient compression, and noisy wireless communication channel to study the effect on the application accuracy. Discrete cosine transform (DCT) and compressive sensing are used for EEG signals acquisition and compression. To obtain low-complexity energy-efficient, the best data accuracy with higher compression ratio is sought. A reconstructed algorithm derived from DCT of daubechie's wavelet 6 is used to decompose the EEG signal at different levels. DCT is combined with the best basis function neural networks for EEG signals classification. Extensive experimental work is conducted, utilizing four classification models. The obtained results show an improvement in classification accuracies and an optimal classification rate of about 95% is achieved when using NN classifier at 85% of CR in the case of no SNR value. The satisfying results demonstrate the effect of efficient compression on maximizing the sensor lifetime without affecting the application's accuracy. 2013 IEEE.
اللغةen
الناشرIEEE
الموضوعCompressive sensing
DCT
Discrete Cosine Transform(DCT)
EEG signals classification
Electroencephalogram signals
Epileptic seizure detection
Wavelet compression
Wireless communication channels
Brain
Classification (of information)
Data compression
Discrete cosine transforms
Energy efficiency
Feature extraction
Mobile computing
Neurodegenerative diseases
Neurophysiology
Signal detection
Signal reconstruction
Signal to noise ratio
Wireless telecommunication systems
Electroencephalography
العنوانPerformance evaluation for compression-accuracy trade-off using compressive sensing for EEG-based epileptic seizure detection in wireless tele-monitoring
النوعConference Paper
الصفحات231-236
dc.accessType Abstract Only


الملفات في هذه التسجيلة

الملفاتالحجمالصيغةالعرض

لا توجد ملفات لها صلة بهذه التسجيلة.

هذه التسجيلة تظهر في المجموعات التالية

عرض بسيط للتسجيلة