عرض بسيط للتسجيلة

المؤلفMagzoub M.I.
المؤلفKiran R.
المؤلفSalehi S.
المؤلفHussein I.A.
المؤلفNasser M.S.
تاريخ الإتاحة2022-04-25T10:59:43Z
تاريخ النشر2021
اسم المنشورEnergies
المصدرScopus
المعرّفhttp://dx.doi.org/10.3390/en14051377
معرّف المصادر الموحدhttps://www.scopus.com/inward/record.uri?eid=2-s2.0-85107118241&doi=10.3390%2fen14051377&partnerID=40&md5=67a718e1765abe575378f8c339911ff1
معرّف المصادر الموحدhttp://hdl.handle.net/10576/30385
الملخصThe traditional way to mitigate loss circulation in drilling operations is to use preventative and curative materials. However, it is difficult to quantify the amount of materials from every possible combination to produce customized rheological properties. In this study, machine learning (ML) is used to develop a framework to identify material composition for loss circulation applications based on the desired rheological characteristics. The relation between the rheological properties and the mud components for polyacrylamide/polyethyleneimine (PAM/PEI)-based mud is assessed experimentally. Four different ML algorithms were implemented to model the rheological data for various mud components at different concentrations and testing conditions. These four algorithms include (a) k-Nearest Neighbor, (b) Random Forest, (c) Gradient Boosting, and (d) AdaBoosting. The Gradient Boosting model showed the highest accuracy (91 and 74% for plastic and apparent viscosity, respectively), which can be further used for hydraulic calculations. Overall, the experimental study presented in this paper, together with the proposed ML-based framework, adds valuable information to the design of PAM/PEI-based mud. The ML models allowed a wide range of rheology assessments for various drilling fluid formulations with a mean accuracy of up to 91%. The case study has shown that with the appropriate combination of materials, reasonable rheological properties could be achieved to prevent loss circulation by managing the equivalent circulating density (ECD).
راعي المشروعAcknowledgments: The authors would like to thank the Qatar National Research Fund (a member of Qatar Foundation) for funding this study. This paper was made possible by an NPRP Grant # NPRP10-0125-170240. The authors also thank SNF Floerger Group, France, for providing the materials for the tests. The statements made herein are solely the responsibility of the authors.
اللغةen
الناشرMDPI AG
الموضوعDecision trees
Drilling fluids
Drilling machines (machine tools)
Elasticity
Gels
Infill drilling
Machine learning
Nearest neighbor search
Rheology
Turing machines
Apparent viscosity
Equivalent circulating density
Hydraulic calculations
K-nearest neighbors
Machine learning approaches
Material compositions
Rheological characteristics
Rheological property
Loss prevention
العنوانAssessing the relation between mud components and rheology for loss circulation prevention using polymeric gels: A machine learning approach
النوعArticle
رقم العدد5
رقم المجلد14
dc.accessType Abstract Only


الملفات في هذه التسجيلة

الملفاتالحجمالصيغةالعرض

لا توجد ملفات لها صلة بهذه التسجيلة.

هذه التسجيلة تظهر في المجموعات التالية

عرض بسيط للتسجيلة