عرض بسيط للتسجيلة

المؤلفAlakbari F.S.
المؤلفMohyaldinn M.E.
المؤلفAyoub M.A.
المؤلفMuhsan A.S.
المؤلفHussein I.A.
تاريخ الإتاحة2022-04-25T10:59:44Z
تاريخ النشر2021
اسم المنشورSociety of Petroleum Engineers - SPE/IATMI Asia Pacific Oil and Gas Conference and Exhibition 2021, APOG 2021
المصدرScopus
المعرّفhttp://dx.doi.org/10.2118/205817-MS
معرّف المصادر الموحدhttps://www.scopus.com/inward/record.uri?eid=2-s2.0-85118462949&doi=10.2118%2f205817-MS&partnerID=40&md5=21e05910e58f16419da935bc70669223
معرّف المصادر الموحدhttp://hdl.handle.net/10576/30391
الملخصThe oil formation volume factor is one of the main reservoir fluid properties that plays a crucial role in designing successful field development planning and oil and gas production optimization. The oil formation volume factor can be acquired from pressure-volume-temperature (PVT) laboratory experiments; nonetheless, these experiments' results are time-consuming and costly. Therefore, many studies used alternative methods, namely empirical correlations (using regression techniques) and machine learning to determine the formation volume factor. Unfortunately, the previous correlations and machine learning methods have some limitations, such as the lack of accuracy. Furthermore, most earlier models have not studied the relationships between the inputs and outputs to show the proper physical behaviors. Consequently, this study comes to develop a model to predict the oil formation volume factor at the bubble point (Bo) using an adaptive neuro-fuzzy inference system (ANFIS). The ANFIS model was built based on 924 data sets collected from published sources. The ANFIS model and previous 28 models were validated and compared using the trend analysis and statistical error analysis, namely average absolute percent relative error (AAPRE) and correlation coefficient (R). The trend analysis study has shown that the ANFIS model and some previous models follow the correct trend analysis. The ANFIS model is the first rank model and has the lowest AAPRE of 0.71 and the highest (R) of 0.9973. The ANFIS model also has the lowest average percent relative error (APRE), root mean square error (RMSE), and standard deviation (SD) of -0.09, 1.01, 0.0075, respectively.
راعي المشروعThe authors express their appreciation to the Universiti Teknologi PETRONAS for supporting this work under the YUTP-Grant cost center 015LC0-098. They also especially thank COREOR, Petroleum Engineering, Universiti Teknologi PETRONAS, for supporting this work.
اللغةen
الناشرSociety of Petroleum Engineers
الموضوعErrors
Fuzzy inference
Fuzzy neural networks
Gasoline
Machine learning
Mean square error
Petroleum reservoir engineering
Petroleum reservoirs
Adaptive neuro-fuzzy inference
Adaptive neuro-fuzzy inference system
Fluid property
Neuro-fuzzy inference systems
Oil formation volume factors
Pressure-volume-temperatures
Reservoir fluid
Reservoir fluid property
Fuzzy systems
العنوانDevelopment of oil formation volume factor model using adaptive neuro-fuzzy inference systems ANFIS
النوعConference Paper
dc.accessType Abstract Only


الملفات في هذه التسجيلة

الملفاتالحجمالصيغةالعرض

لا توجد ملفات لها صلة بهذه التسجيلة.

هذه التسجيلة تظهر في المجموعات التالية

عرض بسيط للتسجيلة