• English
    • العربية
  • العربية
  • Login
  • QU
  • QU Library
  •  Home
  • Communities & Collections
  • Help
    • Item Submission
    • Publisher policies
    • User guides
    • FAQs
  • About QSpace
    • Vision & Mission
View Item 
  •   Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Engineering
  • Chemical Engineering
  • View Item
  • Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Engineering
  • Chemical Engineering
  • View Item
  •      
  •  
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    A study on stability of active layer of polymer solar cells: effect of UV–visible light with different conditions

    Thumbnail
    Date
    2019
    Author
    Mehmood U.
    Harrabi K.
    Hussein I.A.
    Shanmugam N.
    Mekki A.
    Mekki M.
    McLachlan M.A.
    ...show more authors ...show less authors
    Metadata
    Show full item record
    Abstract
    The objective of this study is to investigate the stability of the active layer of polymer solar cells from the effect of UV–visible light irradiation using different conditions with respect to time. The active layers were composed of poly(3-hexylthiophene) (P3HT) and [6,6]-phenyl C61 butyric acid methyl ester (PCBM), deposited on conductive glass substrates through spin coating. These samples are placed in a UV–visible light exposure chamber using different conditions (heat and water) over the specific periods of time. The samples are analyzed by UV–visible absorption spectroscopy, X-ray photoelectron spectroscopy and Fourier transforms infrared spectroscopy (FTIR) measurements. The results indicate that after continuous exposure to UV irradiation for 72 and 120 h, the sample shows a significant decrease in absorption of the main peak. The sample shows around 25% loss in absorption (main peak) after 72 h of irradiation. The FTIR results illustrate a progressive decrease in intensities of all typical absorption peaks owing to P3HT ring scission, side chain oxidation as well as degradation of the side groups of PCBM.
    URI
    https://www.scopus.com/inward/record.uri?eid=2-s2.0-85048360208&doi=10.1007%2fs00289-018-2368-0&partnerID=40&md5=9f05affbd45babd2ef75e8fad59422d5
    DOI/handle
    http://dx.doi.org/10.1007/s00289-018-2368-0
    http://hdl.handle.net/10576/30421
    Collections
    • Chemical Engineering [‎1195‎ items ]
    • GPC Research [‎502‎ items ]

    entitlement


    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Home

    Submit your QU affiliated work

    Browse

    All of Digital Hub
      Communities & Collections Publication Date Author Title Subject Type Language Publisher
    This Collection
      Publication Date Author Title Subject Type Language Publisher

    My Account

    Login

    Statistics

    View Usage Statistics

    About QSpace

    Vision & Mission

    Help

    Item Submission Publisher policiesUser guides FAQs

    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Video