One-Dimensional Convolutional Neural Networks for Real-Time Damage Detection of Rotating Machinery
المؤلف | Avci O. |
المؤلف | Abdeljaber O. |
المؤلف | Kiranyaz, Mustafa Serkan |
المؤلف | Sassi S. |
المؤلف | Ibrahim A. |
المؤلف | Gabbouj M. |
تاريخ الإتاحة | 2022-04-26T12:31:17Z |
تاريخ النشر | 2022 |
اسم المنشور | Conference Proceedings of the Society for Experimental Mechanics Series |
المصدر | Scopus |
المعرّف | http://dx.doi.org/10.1007/978-3-030-76335-0_7 |
الملخص | This paper presents a novel real-time rotating machinery damage monitoring system. The system detects, quantifies, and localizes damage in ball bearings in a fast and accurate way using one-dimensional convolutional neural networks (1D-CNNs). The proposed method has been validated with experimental work not only for single damage but also for multiple damage cases introduced onto ball bearings in laboratory environment. The two 1D-CNNs (one set for the interior bearing ring and another set for the exterior bearing ring) were trained and tested under the same conditions for torque and speed. It is observed that the proposed system showed excellent performance even with the severe additive noise. The proposed method can be implemented in practical use for online defect detection, monitoring, and condition assessment of ball bearings and other rotatory machine elements. |
اللغة | en |
الناشر | Springer |
الموضوع | Additive noise Ball bearings Convolution Convolutional neural networks Electronic assessment Monitoring Rings (components) Rotating machinery Structural analysis Structural dynamics Bearing rings Condition assessments Damage monitoring Defect detection Laboratory environment Multiple damages Practical use Rotatory machines Damage detection |
النوع | Conference Paper |
الصفحات | 73-83 |
الملفات في هذه التسجيلة
الملفات | الحجم | الصيغة | العرض |
---|---|---|---|
لا توجد ملفات لها صلة بهذه التسجيلة. |
هذه التسجيلة تظهر في المجموعات التالية
-
الهندسة الكهربائية [2649 items ]
-
الهندسة الميكانيكية والصناعية [1396 items ]