Performance Comparison of Learned vs. Engineered Features for Polarimetric SAR Terrain Classification
المؤلف | Ahishali M. |
المؤلف | Ince T. |
المؤلف | Kiranyaz, Mustafa Serkan |
المؤلف | Gabbouj M. |
تاريخ الإتاحة | 2022-04-26T12:31:21Z |
تاريخ النشر | 2019 |
اسم المنشور | Progress in Electromagnetics Research Symposium |
المصدر | Scopus |
المعرّف | http://dx.doi.org/10.1109/PIERS-Spring46901.2019.9017716 |
الملخص | In this work, we propose to use learned features for terrain classification of Polarimetric Synthetic Aperture Radar (PolSAR) images. In the proposed classification framework, the learned features are extracted from sliding window regions using Convolutional Neural Networks (CNNs), and then they are used for the classification with the linear Support Vector Machine (SVM) classifier. The classification performance of the proposed approach is compared with numerous target decomposition theorems (TDs) as the engineered features tested with two classifiers: Collective Network of Binary Classifiers (CNBCs) and SVMs. The experimental evaluations over two commonly used benchmark AIRSAR PolSAR images, San Francisco Bay and Flevoland at L- Band, reveal that the classification performance of the learned features with CNNs outperforms the performance of the engineered features as TDs even the dimension of learned features is the quarter of the engineered features. |
اللغة | en |
الناشر | Institute of Electrical and Electronics Engineers Inc. |
الموضوع | Benchmarking Convolutional neural networks Domain decomposition methods Photonics Piers Polarimeters Radar imaging Support vector machines Synthetic aperture radar Classification framework Classification performance Experimental evaluation Linear Support Vector Machines Performance comparison Polarimetric synthetic aperture radars Target decomposition theorems Terrain classification Classification (of information) |
النوع | Conference Paper |
الصفحات | 2317-2324 |
رقم المجلد | 2019-June |
الملفات في هذه التسجيلة
الملفات | الحجم | الصيغة | العرض |
---|---|---|---|
لا توجد ملفات لها صلة بهذه التسجيلة. |
هذه التسجيلة تظهر في المجموعات التالية
-
الهندسة الكهربائية [2649 items ]