Learned vs. hand-designed features for ECG beat classification: A comprehensive study
المؤلف | Ince T. |
المؤلف | Zabihi M. |
المؤلف | Kiranyaz, Mustafa Serkan |
المؤلف | Gabbouj M. |
تاريخ الإتاحة | 2022-04-26T12:31:23Z |
تاريخ النشر | 2017 |
اسم المنشور | IFMBE Proceedings |
المصدر | Scopus |
المعرّف | http://dx.doi.org/10.1007/978-981-10-5122-7_138 |
الملخص | In this study, in order to find out the best ECG classification performance we realized comparative evaluations among the state-of-the-art classifiers such as Convolutional Neural Networks (CNNs), multi-layer perceptrons (MLPs) and Support Vector Machines (SVMs). Furthermore, we compared the performance of the learned features from the last convolutional layer of trained 1-D CNN classifier against the handcrafted features that are extracted by Principal Component Analysis, Hermite Transform and Dyadic Wavelet Transform. Experimental results over the MIT-BIH arrhythmia benchmark database demonstrate that the single channel (raw ECG data based) shallow 1D CNN classifier over the learned features in general achieves the highest classification accuracy and computational efficiency. Finally, it is observed that the use of the learned features on either SVM or MLP classifiers does not yield any performance improvement. |
اللغة | en |
الناشر | Springer Verlag |
الموضوع | Biochemical engineering Biomedical engineering Computational efficiency Convolution Education Electrocardiography Neural networks Principal component analysis Support vector machines Wavelet transforms Comparative evaluations Convolutional neural network Dyadic wavelet transform Ecg beat classifications Ecg classifications Learned and hand-crafted features Multi-layer perceptrons (MLPs) Support vector machine (SVMs) Classification (of information) |
النوع | Conference Paper |
الصفحات | 551-554 |
رقم المجلد | 65 |
الملفات في هذه التسجيلة
الملفات | الحجم | الصيغة | العرض |
---|---|---|---|
لا توجد ملفات لها صلة بهذه التسجيلة. |
هذه التسجيلة تظهر في المجموعات التالية
-
الهندسة الكهربائية [2649 items ]