K-Subspaces Quantization for Approximate Nearest Neighbor Search
المؤلف | Ozan E.C. |
المؤلف | Kiranyaz, Mustafa Serkan |
المؤلف | Gabbouj M. |
تاريخ الإتاحة | 2022-04-26T12:31:23Z |
تاريخ النشر | 2016 |
اسم المنشور | IEEE Transactions on Knowledge and Data Engineering |
المصدر | Scopus |
المعرّف | http://dx.doi.org/10.1109/TKDE.2016.2535287 |
الملخص | Approximate Nearest Neighbor (ANN) search has become a popular approach for performing fast and efficient retrieval on very large-scale datasets in recent years, as the size and dimension of data grow continuously. In this paper, we propose a novel vector quantization method for ANN search which enables faster and more accurate retrieval on publicly available datasets. We define vector quantization as a multiple affine subspace learning problem and explore the quantization centroids on multiple affine subspaces. We propose an iterative approach to minimize the quantization error in order to create a novel quantization scheme, which outperforms the state-of-the-art algorithms. The computational cost of our method is also comparable to that of the competing methods. |
اللغة | en |
الناشر | IEEE Computer Society |
الموضوع | Binary codes Clustering algorithms Iterative methods Nearest neighbor search Vectors Approximate nearest neighbors (ANN) Computational costs Large-scale datasets large-scale retrieval Quantization errors Quantization schemes State-of-the-art algorithms Sub-Space Clustering Vector quantization |
النوع | Article |
الصفحات | 1722-1733 |
رقم العدد | 7 |
رقم المجلد | 28 |
الملفات في هذه التسجيلة
الملفات | الحجم | الصيغة | العرض |
---|---|---|---|
لا توجد ملفات لها صلة بهذه التسجيلة. |
هذه التسجيلة تظهر في المجموعات التالية
-
الهندسة الكهربائية [2649 items ]