عرض بسيط للتسجيلة

المؤلفGuillermo, Vazquez
المؤلفSingh, Prashant
المؤلفSauceda, Daniel
المؤلفCouperthwaite, Richard
المؤلفBritt, Nicholas
المؤلفYoussef, Khaled
المؤلفJohnson, Duane D.
المؤلفArróyave, Raymundo
تاريخ الإتاحة2022-05-10T08:55:23Z
تاريخ النشر2022-06-15
اسم المنشورActa Materialia
المعرّفhttp://dx.doi.org/10.1016/j.actamat.2022.117924
الاقتباسVazquez, G., Singh, P., Sauceda, D., Couperthwaite, R., Britt, N., Youssef, K., ... & Arróyave, R. (2022). Efficient machine-learning model for fast assessment of elastic properties of high-entropy alloys. Acta Materialia, 117924.
الرقم المعياري الدولي للكتاب13596454
معرّف المصادر الموحدhttps://www.sciencedirect.com/science/article/pii/S1359645422003068
معرّف المصادر الموحدhttp://hdl.handle.net/10576/30803
الملخصWe combined descriptor-based analytical models for stiffness-matrix and elastic-moduli with mean-field methods to accelerate assessment of technologically useful properties of high-entropy alloys, such as strength and ductility. Model training for elastic properties uses Sure-Independence Screening (SIS) and Sparsifying Operator (SO) method yielding an optimal analytical model, constructed with meaningful atomic features to predict target properties. Computationally inexpensive analytical descriptors were trained using a database of elastic properties determined from density functional theory for binary and ternary subsets of Nb-Mo-Ta-W-V refractory alloys. The optimal Elastic-SISSO models, extracted from an exponentially large feature space, give an extremely accurate prediction of target properties, similar to or better than other models, with some verified from existing experiments. We also show that electronegativity variance and elastic-moduli can directly predict trends in ductility and yield strength of refractory HEAs, and reveals promising alloy concentration regions.
اللغةen
الناشرElsevier
الموضوعRefractory high entropy alloys
Elastic properties
Machine learning
Descriptors
SISSO
Density-functional theory
العنوانEfficient machine-learning model for fast assessment of elastic properties of high-entropy alloys
النوعArticle
رقم المجلد232
dc.accessType Open Access


الملفات في هذه التسجيلة

Thumbnail

هذه التسجيلة تظهر في المجموعات التالية

عرض بسيط للتسجيلة