Efficient machine-learning model for fast assessment of elastic properties of high-entropy alloys
Author | Guillermo, Vazquez |
Author | Singh, Prashant |
Author | Sauceda, Daniel |
Author | Couperthwaite, Richard |
Author | Britt, Nicholas |
Author | Youssef, Khaled |
Author | Johnson, Duane D. |
Author | Arróyave, Raymundo |
Available date | 2022-05-10T08:55:23Z |
Publication Date | 2022-06-15 |
Publication Name | Acta Materialia |
Identifier | http://dx.doi.org/10.1016/j.actamat.2022.117924 |
Citation | Vazquez, G., Singh, P., Sauceda, D., Couperthwaite, R., Britt, N., Youssef, K., ... & Arróyave, R. (2022). Efficient machine-learning model for fast assessment of elastic properties of high-entropy alloys. Acta Materialia, 117924. |
ISSN | 13596454 |
Abstract | We combined descriptor-based analytical models for stiffness-matrix and elastic-moduli with mean-field methods to accelerate assessment of technologically useful properties of high-entropy alloys, such as strength and ductility. Model training for elastic properties uses Sure-Independence Screening (SIS) and Sparsifying Operator (SO) method yielding an optimal analytical model, constructed with meaningful atomic features to predict target properties. Computationally inexpensive analytical descriptors were trained using a database of elastic properties determined from density functional theory for binary and ternary subsets of Nb-Mo-Ta-W-V refractory alloys. The optimal Elastic-SISSO models, extracted from an exponentially large feature space, give an extremely accurate prediction of target properties, similar to or better than other models, with some verified from existing experiments. We also show that electronegativity variance and elastic-moduli can directly predict trends in ductility and yield strength of refractory HEAs, and reveals promising alloy concentration regions. |
Language | en |
Publisher | Elsevier |
Subject | Refractory high entropy alloys Elastic properties Machine learning Descriptors SISSO Density-functional theory |
Type | Article |
Volume Number | 232 |
Check access options
Files in this item
This item appears in the following Collection(s)
-
Materials Science & Technology [310 items ]