Towards stacking fault energy engineering in FCC high entropy alloys
المؤلف | Tasneem Z., Khan |
المؤلف | Kirk, Tanner |
المؤلف | Vazquez, Guillermo |
المؤلف | Singh, Prashant |
المؤلف | Smirnov, A.V. |
المؤلف | Johnson, Duane D. |
المؤلف | Youssef, Khaled |
المؤلف | Arróyave, Raymundo |
تاريخ الإتاحة | 2022-05-11T04:36:59Z |
تاريخ النشر | 2022-02-01 |
اسم المنشور | Acta Materialia |
المعرّف | http://dx.doi.org/10.1016/j.actamat.2021.117472 |
الاقتباس | Khan, T. Z., Kirk, T., Vazquez, G., Singh, P., Smirnov, A. V., Johnson, D. D., ... & Arróyave, R. (2022). Towards stacking fault energy engineering in FCC high entropy alloys. Acta Materialia, 224, 117472. |
الرقم المعياري الدولي للكتاب | 13596454 |
الملخص | Stacking Fault Energy (SFE) is an intrinsic alloy property that governs much of the plastic deformation mechanisms observed in fcc alloys. While SFE has been recognized for many years as a key intrinsic mechanical property, its inference via experimental observations or prediction using, for example, computationally intensive first-principles methods is challenging. This difficulty precludes the explicit use of SFE as an alloy design parameter. In this work, we combine DFT calculations (with necessary configurational averaging), machine-learning (ML) and physics-based models to predict the SFE in the fcc CoCrFeMnNiV-Al high-entropy alloy space. The best-performing ML model is capable of accurately predicting the SFE of arbitrary compositions within this 7-element system. This efficient model along with a recently developed model to estimate intrinsic strength of fcc HEAs is used to explore the strength–SFE Pareto front, predicting new-candidate alloys with particularly interesting mechanical behavior. |
اللغة | en |
الناشر | Elsevier |
الموضوع | High entropy alloys Stacking fault energy Machine learning Alloy design |
النوع | Article |
رقم المجلد | 224 |
تحقق من خيارات الوصول
الملفات في هذه التسجيلة
هذه التسجيلة تظهر في المجموعات التالية
-
علم وتكنولوجيا المواد [310 items ]