Entropy-driven melting point depression in fcc HEAs
View/ Open
Publisher version (Check access options)
Check access options
Date
2022-02-01Metadata
Show full item recordAbstract
High Entropy Alloys (HEAs) are an increasingly dominant alloy design paradigm. The premise of entropic stabilization of single-phase alloys has motivated much of the research on HEAs. Chemical complexity may indeed help stabilize single alloy phases relative to other lower-entropy competing solid phases. Paradoxically, this complexity may de-stabilize these alloys against the liquid phase, potentially limiting the application space of HEAs at elevated temperatures. In this work, we carry out a comprehensive investigation of the phase stability in the fcc CoCrFeMnNiV-Al HEA space using a state of the art CALPHAD database. By using modern visualization techniques and statistical analysis we examine the trade-off between chemical complexity and stability against the liquid state and identify a potentially difficult to overcome barrier for development of high temperature alloys, at least within the conventional fcc HEA space. Limited experimental data seem to be consistent with this analysis.
Collections
- Materials Science & Technology [310 items ]