Gait recognition for person re-identification
Author | Elharrouss O. |
Author | Almaadeed N. |
Author | Al-Maadeed, Somaya |
Author | Bouridane A. |
Available date | 2022-05-19T10:23:08Z |
Publication Date | 2021 |
Publication Name | Journal of Supercomputing |
Resource | Scopus |
Identifier | http://dx.doi.org/10.1007/s11227-020-03409-5 |
Abstract | Person re-identification across multiple cameras is an essential task in computer vision applications, particularly tracking the same person in different scenes. Gait recognition, which is the recognition based on the walking style, is mostly used for this purpose due to that human gait has unique characteristics that allow recognizing a person from a distance. However, human recognition via gait technique could be limited with the position of captured images or videos. Hence, this paper proposes a gait recognition approach for person re-identification. The proposed approach starts with estimating the angle of the gait first, and this is then followed with the recognition process, which is performed using convolutional neural networks. Herein, multitask convolutional neural network models and extracted gait energy images (GEIs) are used to estimate the angle and recognize the gait. GEIs are extracted by first detecting the moving objects, using background subtraction techniques. Training and testing phases are applied to the following three recognized datasets: CASIA-(B), OU-ISIR, and OU-MVLP. The proposed method is evaluated for background modeling using the Scene Background Modeling and Initialization (SBI) dataset. The proposed gait recognition method showed an accuracy of more than 98% for almost all datasets. Results of the proposed approach showed higher accuracy compared to obtained results of other methods result for CASIA-(B) and OU-MVLP and form the best results for the OU-ISIR dataset. |
Sponsor | This publication was made by NPRP Grant # NPRP8-140-2-065 from Qatar National Research Fund (a member of Qatar Foundation). The statements made herein are solely the responsibility of the authors. |
Language | en |
Publisher | Springer |
Subject | Convolution Gait analysis Object detection Background subtraction techniques Computer vision applications Gait energy images Human recognition Multiple cameras Person re identifications Recognition process Training and testing Convolutional neural networks |
Type | Article |
Pagination | 3653-3672 |
Issue Number | 4 |
Volume Number | 77 |
Files in this item
Files | Size | Format | View |
---|---|---|---|
There are no files associated with this item. |
This item appears in the following Collection(s)
-
Computer Science & Engineering [2402 items ]