عرض بسيط للتسجيلة

المؤلفChellali S.
المؤلفAl-Maadeed, Somaya
المؤلفKenai O.
المؤلفAhfir M.
المؤلفHidouci W.
تاريخ الإتاحة2022-05-19T10:23:09Z
تاريخ النشر2021
اسم المنشورInternational Arab Journal of Information Technology
المصدرScopus
المعرّفhttp://dx.doi.org/10.34028/iajit/18/1/8
معرّف المصادر الموحدhttp://hdl.handle.net/10576/31109
الملخصThis study aims to explore the English accents in the Arab world. Although there are limited resources for a speech corpus that attempts to automatically identify the degree of accent patterns of an Arabic speaker of English, there is no speech corpus specialized for Arabic speakers of English in the Middle East and North Africa (MENA). To that end, different samples were collected in order to create the linguistic resource that we called Middle Eastern and North African English Speech Corpus (MENAESC). In addition to the “accent approach” applied in the field of automatic language/dialect recognition; we applied also the “macro-accent approach” -by employing Mel-Frequency Cepstral Coefficients (MFCC), Energy and Shifted Delta Cepstra (SDC) features and Gaussian Mixture Model-Universal Background Model (GMM-UBM) classifier- on four accents (Egyptian, Qatari, Syrian, and Tunisian accents) among the eleven accents that were selected based on their high population density in the location where the experiments were carried out. By using the Equal Error Rate percentage (EER%) for the assessment of our system effectiveness in the identification of MENA English accents using the two approaches mentioned above through the employ of the MENAESC, results showed we reached 1.5 to 2%, for “accent approach” and 2 to 3.5% for “macro-accents approach” for identification of MENA English. It also exhibited that the Qatari accent, of the 4 accents included, scored the lowest EER% for all tests performed. Taken together, the system effectiveness is not only affected by the approaches used, but also by the database size MENAESC and its characteristics. Moreover, it is impacted by the proficiency of the Arabic speakers of English and the influence of their mother tongue.
راعي المشروعThis paper was made possible by a QUCP award [QUCP-CENG-CSE-15-16-1] from the Qatar University. The statements made herein are the sole responsibility of its authors.
اللغةen
الناشرZarka Private University
الموضوعAccent
Automatic identification
Macro-accent
MENAESC
MFCC+Energy and SDC features
العنوانMiddle eastern and north african english speech corpus (Menaesc): Automatic identification of mena english accents
النوعArticle
الصفحات67-76
رقم العدد1
رقم المجلد18
dc.accessType Abstract Only


الملفات في هذه التسجيلة

الملفاتالحجمالصيغةالعرض

لا توجد ملفات لها صلة بهذه التسجيلة.

هذه التسجيلة تظهر في المجموعات التالية

عرض بسيط للتسجيلة