• English
    • العربية
  • العربية
  • Login
  • QU
  • QU Library
  •  Home
  • Communities & Collections
  • Help
    • Item Submission
    • Publisher policies
    • User guides
    • FAQs
  • About QSpace
    • Vision & Mission
View Item 
  •   Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Engineering
  • Chemical Engineering
  • View Item
  • Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Engineering
  • Chemical Engineering
  • View Item
  •      
  •  
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Doping amino acids with classical gas hydrate inhibitors to facilitate the hydrate inhibition effect at low dosages

    Thumbnail
    Date
    2020
    Author
    Qureshi, M. F.
    Khraisheh, Majeda
    Almomani, F.
    Metadata
    Show full item record
    Abstract
    The formation of gas hydrates in offshore subsea lines is a major flow assurance concern for the oil and gas industry. In this work, the thermodynamic hydrate inhibition (THI) effect of doping amino acids (AA) such as glycine (Gly), l-alanine (Ala), and histidine (His) with classical gas hydrate inhibitors (CHI) such as methanol (Me), ethylene glycol (EG), and sodium chloride (NaCl) have been examined at diverse operating conditions. The experimental tests were carried out using rocking cell assembly [RC-5] on pure methane gas at different pressure conditions (40?120 bars) using an equal ratio mixture (1:1) of AA and CHI at a low dosage (2 wt%). The computational three-dimensional molecular models of AA and CHI were generated to examine electric charge distribution within these molecules and cognize the interaction mechanism between methane hydrates and AA. The experimental results indicate that Me and EG can synergize the THI effect of AA at a low dosage of 1 wt%. The AA doped with Me tend to provide better THI effect compared to AA doped with EG and NaCl. The experimental results also show that the doped AA Ala mixtures provide THI effect similar to pure CHI such as Me, EG, and NaCl at low dosage (2 wt%).
    DOI/handle
    http://dx.doi.org/10.1002/ghg.1990
    http://hdl.handle.net/10576/31204
    Collections
    • Chemical Engineering [‎1196‎ items ]

    entitlement


    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Home

    Submit your QU affiliated work

    Browse

    All of Digital Hub
      Communities & Collections Publication Date Author Title Subject Type Language Publisher
    This Collection
      Publication Date Author Title Subject Type Language Publisher

    My Account

    Login

    Statistics

    View Usage Statistics

    About QSpace

    Vision & Mission

    Help

    Item Submission Publisher policiesUser guides FAQs

    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Video