Cerium Oxide Nanoparticle Incorporated Electrospun Poly(3-hydroxybutyrate-co-3-hydroxyvalerate) Membranes for Diabetic Wound Healing Applications
التاريخ
2020المؤلف
Augustine R.Hasan, Anwarul
Patan N.K.
Dalvi Y.B.
Varghese R.
Antony A.
Unni R.N.
Sandhyarani N.
Moustafa A.-E.A.
...show more authors ...show less authors
البيانات الوصفية
عرض كامل للتسجيلةالملخص
Insufficient cell proliferation, cell migration, and angiogenesis are among the major causes for nonhealing of chronic diabetic wounds. Incorporation of cerium oxide nanoparticles (nCeO2) in wound dressings can be a promising approach to promote angiogenesis and healing of diabetic wounds. In this paper, we report the development of a novel nCeO2 containing electrospun poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV) membrane for diabetic wound healing applications. In vitro cell adhesion studies, chicken embryo angiogenesis assay, and in vivo diabetic wound healing studies were performed to assess the cell proliferation, angiogenesis, and wound healing potential of the developed membranes. The experimental results showed that nCeO2 containing PHBV membranes can promote cell proliferation and cell adhesion when used as wound dressings. For less than 1% w/w of nCeO2 content, human mammary epithelial cells (HMEC) were adhered parallel to the individual fibers of PHBV. For higher than 1% w/w of nCeO2 content, cells started to flatten and spread over the fibers. In ovo angiogenic assay showed the ability of nCeO2 incorporated PHBV membranes to enhance blood vessel formation. In vivo wound healing study in diabetic rats confirmed the wound healing potential of nCeO2 incorporated PHBV membranes. The study suggests that nCeO2 incorporated PHBV membranes have strong potential to be used as wound dressings to enhance cell proliferation and vascularization and promote the healing of diabetic wounds.
المجموعات
- الهندسة الميكانيكية والصناعية [1396 items ]