Principles of time-frequency feature extraction for change detection in non-stationary signals: Applications to newborn EEG abnormality detection
المؤلف | Boashash B. |
المؤلف | Azemi G. |
المؤلف | Ali Khan N. |
تاريخ الإتاحة | 2022-05-31T19:01:35Z |
تاريخ النشر | 2015 |
اسم المنشور | Pattern Recognition |
المصدر | Scopus |
المعرّف | http://dx.doi.org/10.1016/j.patcog.2014.08.016 |
الملخص | This paper considers the general problem of detecting change in non-stationary signals using features observed in the time-frequency (t,f) domain, obtained using a class of quadratic time-frequency distributions (QTFDs). The focus of this study is to propose a methodology to define new (t,f) features by extending time-only and frequency-only features to the joint (t,f) domain for detecting changes in non-stationary signals. The (t,f) features are used as a representative subset characterizing the status of the observed non-stationary signal. Change in the signal is then reflected as a change in the (t,f) features. This (t,f) approach is applied to the problem of detecting abnormal brain activity in newborns (e.g. seizure) using measurements of the EEG for diagnosis and prognosis. In addition, a pre-processing stage for detecting artifacts in EEG signals for signal enhancement is studied and implemented separately. Overall results indicate that, in general, the (t,f) approach results in an improved performance in detecting artifacts and seizures in newborn EEG signals as compared to time-only or frequency-only features. |
اللغة | en |
الناشر | Elsevier Ltd |
الموضوع | Biomedical signal processing Brain Extraction Signal detection Abnormality detection Newborn EEG artifacts ROC analysis Seizure Time frequency features Feature extraction |
النوع | Article |
الصفحات | 616-627 |
رقم العدد | 3 |
رقم المجلد | 48 |
تحقق من خيارات الوصول
الملفات في هذه التسجيلة
الملفات | الحجم | الصيغة | العرض |
---|---|---|---|
لا توجد ملفات لها صلة بهذه التسجيلة. |
هذه التسجيلة تظهر في المجموعات التالية
-
الهندسة الكهربائية [2649 items ]