Detection of perinatal hypoxia using time-frequency analysis of heart rate variability signals
Abstract
This paper presents a time-frequency approach to detect perinatal hypoxia by characterizing the nonstationary nature of heart rate variability (HRV) signals. Quadratic time-frequency distributions (TFDs) are used to represent the HRV signals. Six features based on the instantaneous frequency (IF) of the lower frequency components of HRV signals are selected to establish a classifier using support vector machine. The classifier is trained and tested using the signals recorded from a neonatal piglet model under a controlled hypoxic condition, which provides reliable annotations on the data. The method shows superior performance in the detection of hypoxic epochs with sensitivity (89.8%), specificity (100%) and total accuracy (94.9%) compared with that based on frequency domain features, indicating that nonstationarity should be taken into account for a more accurate assessment of the newborn status with possible hypoxia when analyzing HRV signals.
Collections
- Electrical Engineering [2649 items ]
Related items
Showing items related by title, author, creator and subject.
-
Time-frequency signal and image processing of non-stationary signals with application to the classification of newborn EEG abnormalities
Boashash, Boualem; Boubchir, Larbi; Azemi, Ghasem ( IEEE , 2011 , Conference Paper)This paper presents an introduction to time-frequency (T-F) methods in signal processing, and a novel approach for EEG abnormalities detection and classification based on a combination of signal related features and image ... -
Estimating the number of components of a multicomponent nonstationary signal using the short-term time-frequency Rényi entropy
Sucic, Victor; Saulig, Nicoletta; Boashash, Boualem ( Springer , 2011 , Article)The time-frequency Rényi entropy provides a measure of complexity of a nonstationary multicomponent signal in the time-frequency plane. When the complexity of a signal corresponds to the number of its components, then this ... -
Instantaneous frequency based newborn EEG seizure characterisation
Mesbah M.; O'Toole J.M.; Colditz P.B.; Boashash B. (2012 , Article)The electroencephalogram (EEG), used to noninvasively monitor brain activity, remains the most reliable tool in the diagnosis of neonatal seizures. Due to their nonstationary and multi-component nature, newborn EEG seizures ...