عرض بسيط للتسجيلة

المؤلفBoashash B.
المؤلفBoubchir L.
تاريخ الإتاحة2022-05-31T19:01:38Z
تاريخ النشر2012
اسم المنشورLecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
المصدرScopus
المعرّفhttp://dx.doi.org/10.1007/978-3-642-34478-7_77
معرّف المصادر الموحدhttp://hdl.handle.net/10576/31926
الملخصThis paper presents new time-frequency features for seizure detection in newborn EEG signals. These features are obtained by translating some relevant time features or frequency features to the joint time-frequency domain. A calibration procedure is then used for verification. The relevant translated features are ranked and selected according to maximal-relevance and minimal-redundancy criteria. The selected features improve the performance of newborn EEG seizure detection and classification systems by up to 4% for 100 real newborn EEG segments.
اللغةen
الموضوعFeatures selection
Instantaneous frequency
seizure
Time frequency analysis
Time frequency features
Classification (of information)
Data processing
Error detection
Signal detection
Feature extraction
العنوانOn the selection of time-frequency features for improving the detection and classification of newborn EEG seizure signals and other abnormalities
النوعConference Paper
الصفحات634-643
رقم العددPART 4
رقم المجلد7666 LNCS
dc.accessType Abstract Only


الملفات في هذه التسجيلة

الملفاتالحجمالصيغةالعرض

لا توجد ملفات لها صلة بهذه التسجيلة.

هذه التسجيلة تظهر في المجموعات التالية

عرض بسيط للتسجيلة