عرض بسيط للتسجيلة

المؤلفNashed, Mohamad Shadi
المؤلفRenno, Jamil
المؤلفMohamed, M. Shadi
تاريخ الإتاحة2022-06-14T05:20:53Z
تاريخ النشر2022-06
اسم المنشورFatigue and Fracture of Engineering Materials and Structures
المعرّفhttp://dx.doi.org/10.1111/ffe.13759
الاقتباسNashed, MS, Renno, J, Mohamed, MS. Modelling fatigue uncertainty by means of nonconstant variance neural networks. Fatigue Fract Eng Mater Struct. 2022; 1- 13. doi:10.1111/ffe.13759
الرقم المعياري الدولي للكتاب8756-758X
معرّف المصادر الموحدhttp://hdl.handle.net/10576/32090
الملخصThe modelling of fatigue using machine learning (ML) has been gaining traction in the engineering community. Among ML techniques, the use of probabilistic neural networks (PNNs) has recently emerged as a candidate for modelling fatigue applications. In this paper, we use PNNs with nonconstant variance to model fatigue. We present two case studies to demonstrate the developed approach. First, we model the fatigue life of cover-plated beams under constant amplitude loading, and then we model the relationship between random vibration velocity and equivalent stress in process pipework. The two case studies demonstrate that PNNs with nonconstant variance can model the distribution of the data while also considering the variability of both distribution parameters (mean and standard deviation). This shows the potential of PNNs with nonconstant variance in modelling fatigue applications. All the data and code used in this paper are openly available.
راعي المشروعFinancial support for this research was graciously provided by Qatar National Research Fund (a member of Qatar Foundation) via the National Priorities Research Project under grant NPRP-11S-1220-170112. Open Access funding was graciously provided by the Qatar National Library.
اللغةen
الناشرWiley
العلاقةhttp://hdl.handle.net/10576/29984
الموضوعmachine learning (ML)
probabilistic neural networks (PNNs)
nonconstant variance
fatigue modelling
العنوانModelling fatigue uncertainty by means of nonconstant variance neural networks
النوعArticle
الصفحات1- 13
ESSN1460-2695
dc.accessType Open Access


الملفات في هذه التسجيلة

Thumbnail

هذه التسجيلة تظهر في المجموعات التالية

عرض بسيط للتسجيلة