Facile one-step aqueous-phase synthesis of porous PtBi nanosponges for efficient electrochemical methanol oxidation with a high CO tolerance
View/ Open
Publisher version (Check access options)
Check access options
Date
2022-07-01Author
Qingqing, LuLi, Jiaojiao
Eid, Kamel
Gu, Xilei
Wan, Zhenyu
Li, Wenpeng
Al-Hajri, Rashid S.
Abdullah, Aboubakr M.
...show more authors ...show less authors
Metadata
Show full item recordAbstract
Deliberate control in the composition and morphology of Pt-based catalysts is an efficient route for enhancing the methanol oxidation reaction (MOR). Herein we developed a facile method for rational one-step aqueous-phase synthesis of PtBi nanosponges with tunable composition, based on the prompt reduction of an aqueous solution of Pt and Bi precursors using NaBH4. Mechanistically, the high-reduction power of NaBH4 formed multiple small colloidal PtBi nanocrystals (NCs), which coalesce together to reduce their interfacial energy resulting in oriented attachment growth. The fabrication process is simple, quick (2 min), productive, and free of surfactants or organic solvents. PtBi nanosponges showed 3D network-like architectures with a rough surface and interconnected pores (mesopore and macropore). The MOR mass (specific) activity of Pt67Bi33, 1.8 A/mgPt (15.4 mA cm−2), outperformed Pt78Bi22, Pt, and Pt/C, by 2.3 (1.2), 4.8 (3.6), and 5.1 (24.7) times, respectively besides greater stability and CO tolerance. This method could be extended to synthesize other binary Pt-based catalysts for various electrocatalytic applications.
Collections
- GPC Research [499 items ]