عرض بسيط للتسجيلة

المؤلفHaouari, Mohamed
المؤلفMhiri, Mariem
المؤلفEl-Masri, Mazen
المؤلفAl-Yafi, Karim
تاريخ الإتاحة2022-10-30T09:07:26Z
تاريخ النشر2021-09-14
اسم المنشورInformation Processing and Management
المعرّفhttp://dx.doi.org/10.1016/j.ipm.2021.102749
الاقتباسHaouari, M., Mhiri, M., El-Masri, M., & Al-Yafi, K. (2022). A novel proof of useful work for a blockchain storing transportation transactions. Information Processing & Management, 59(1), 102749.
الرقم المعياري الدولي للكتاب0306-4573
معرّف المصادر الموحدhttps://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85114930955&origin=inward
معرّف المصادر الموحدhttp://hdl.handle.net/10576/35584
الملخصProof-of-Work (PoW) is a common mechanism used to validate peer-to-peer transactions and maintain highly secured immutability of the blockchain. However, this mechanism has been criticized due to its inefficient use of computing resources and its limited usefulness. In this paper, we propose the Proof-of-Useful-Work (PoUW) as an alternative mechanism for transaction validation that puts the squandered computing resources to beneficial use. The main premise is to replace the mathematical puzzle, which constitutes a fundamental part of the Proof-of-Work mechanism, with NP-hard optimization problems whose solutions benefit the participants of the blockchain. We demonstrate its usefulness in the context of transportation. Accordingly, PoUW-based blockchain not only tracks, manages and validates transactions, but also optimizes transportation requests profiting its ecosystem. We describe the framework of the proposed PoUW along with the associated optimization model and the miner's reward mechanism.
اللغةen
الناشرElsevier
الموضوعBlockchain
NP-hard optimization problem
Proof of Useful Work
Supply chain
العنوانA novel proof of useful work for a blockchain storing transportation transactions
النوعArticle
رقم العدد1
رقم المجلد59
dc.accessType Abstract Only


الملفات في هذه التسجيلة

الملفاتالحجمالصيغةالعرض

لا توجد ملفات لها صلة بهذه التسجيلة.

هذه التسجيلة تظهر في المجموعات التالية

عرض بسيط للتسجيلة