عرض بسيط للتسجيلة

المؤلفAlladi, Tejasvi
المؤلفKohli, Varun
المؤلفChamola, Vinay
المؤلفYu, F. Richard
المؤلفGuizani, Mohsen
تاريخ الإتاحة2022-11-01T06:41:48Z
تاريخ النشر2021-06-01
اسم المنشورIEEE Wireless Communications
المعرّفhttp://dx.doi.org/10.1109/MWC.001.2000428
الاقتباسAlladi, T., Kohli, V., Chamola, V., Yu, F. R., & Guizani, M. (2021). Artificial intelligence (AI)-empowered intrusion detection architecture for the internet of vehicles. IEEE Wireless Communications, 28(3), 144-149.‏
الرقم المعياري الدولي للكتاب15361284
معرّف المصادر الموحدhttps://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85111158028&origin=inward
معرّف المصادر الموحدhttp://hdl.handle.net/10576/35667
الملخصRecent advances in the Internet of Things (IoT) and the adoption of IoT in vehicular networks have led to a new and promising paradigm called the Internet of Vehicles (IoV). However, the mode of communication in IoV being wireless in nature poses serious cybersecurity challenges. With many vehicles being connected in the IoV network, the vehicular data is set to explode. Traditional intrusion detection techniques may not be suitable in these scenarios with an extremely large amount of vehicular data being generated at an unprecedented rate and with various types of cybersecurity attacks being launched. Thus, there is a need for the development of advanced intrusion detection techniques capable of handling possible cyberattacks in these networks. Toward this end, we present an artificial intelligence (AI)-based intrusion detection architecture comprising Deep Learning Engines (DLEs) for identification and classification of the vehicular traffic in the IoV networks into potential cyberattack types. Also, taking into consideration the mobility of the vehicles and the realtime requirements of the IoV networks, these DLEs will be deployed on Multi-access Edge Computing (MEC) servers instead of running on the remote cloud. Extensive experimental results using popular evaluation metrics and average prediction time on a MEC testbed demonstrate the effectiveness of the proposed scheme.
اللغةen
الناشرInstitute of Electrical and Electronics Engineers Inc.
الموضوعDeep learning
العنوانArtificial Intelligence (AI)-Empowered Intrusion Detection Architecture for the Internet of Vehicles
النوعArticle
الصفحات144-149
رقم العدد3
رقم المجلد28
dc.accessType Abstract Only


الملفات في هذه التسجيلة

الملفاتالحجمالصيغةالعرض

لا توجد ملفات لها صلة بهذه التسجيلة.

هذه التسجيلة تظهر في المجموعات التالية

عرض بسيط للتسجيلة