عرض بسيط للتسجيلة

المؤلفWang, Naiyu
المؤلفYang, Wenti
المؤلفGuan, Zhitao
المؤلفDu, Xiaojiang
المؤلفGuizani, Mohsen
تاريخ الإتاحة2022-11-09T20:56:53Z
تاريخ النشر2021-01-01
اسم المنشور2021 IEEE Global Communications Conference, GLOBECOM 2021 - Proceedings
المعرّفhttp://dx.doi.org/10.1109/GLOBECOM46510.2021.9685821
الاقتباسWang, N., Yang, W., Guan, Z., Du, X., & Guizani, M. (2021, December). Bpfl: A blockchain based privacy-preserving federated learning scheme. In 2021 IEEE Global Communications Conference (GLOBECOM) (pp. 1-6). IEEE.‏
الترقيم الدولي الموحد للكتاب 9781728181042
معرّف المصادر الموحدhttps://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85127273099&origin=inward
معرّف المصادر الموحدhttp://hdl.handle.net/10576/35988
الملخصFederated Learning (FL), which allows multiple participants to co-train machine Learning models without exposing local data, has been recognized as a promising method in the past few years. However, in the FL process, the server side may steal sensitive information of users, while the client side may also upload malicious data to compromise the training of the global model. Most existing privacy-preservation FL schemes seldom deal with threats from both of these two sides at the same time. In this paper, we propose a Blockchain based Privacy-preserving Federated Learning scheme named BPFL, which uses blockchain as the underlying distributed framework of FL. Homomorphic encryption and Multi-Krum technology are combined to achieve ciphertext-level model aggregation and model filtering, which can guarantee the verifiability of local models while realizing privacy-preservation. Security analysis and performance evaluation prove that the proposed scheme can achieve enhanced security and improve the performance of the FL model.
راعي المشروعThis work is supported by National Foundation of China (61972148).
اللغةen
الناشرInstitute of Electrical and Electronics Engineers Inc.
الموضوعBlockchain
Federated Learning
Homomorphic Encryption
Privacy-Preservation
العنوانBPFL: A Blockchain Based Privacy-Preserving Federated Learning Scheme
النوعConference Paper
dc.accessType Abstract Only


الملفات في هذه التسجيلة

الملفاتالحجمالصيغةالعرض

لا توجد ملفات لها صلة بهذه التسجيلة.

هذه التسجيلة تظهر في المجموعات التالية

عرض بسيط للتسجيلة