عرض بسيط للتسجيلة

المؤلفYang, Helin
المؤلفLam, Kwok Yan
المؤلفNie, Jiangtian
المؤلفZhao, Jun
المؤلفGarg, Sahil
المؤلفXiao, Liang
المؤلفXiong, Zehui
المؤلفGuizani, Mohsen
تاريخ الإتاحة2022-11-10T08:19:22Z
تاريخ النشر2021-01-01
اسم المنشور2021 IEEE Globecom Workshops, GC Wkshps 2021 - Proceedings
المعرّفhttp://dx.doi.org/10.1109/GCWkshps52748.2021.9681960
الاقتباسYang, H., Lam, K. Y., Nie, J., Zhao, J., Garg, S., Xiao, L., ... & Guizani, M. (2021, December). 3D Beamforming Based on Deep Learning for Secure Communication in 5G and Beyond Wireless Networks. In 2021 IEEE Globecom Workshops (GC Wkshps) (pp. 1-6). IEEE.‏
الترقيم الدولي الموحد للكتاب 9781665423908
معرّف المصادر الموحدhttps://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85126134387&origin=inward
معرّف المصادر الموحدhttp://hdl.handle.net/10576/36071
الملخصThree-dimensional (3D) beamforming is a potential technique to enhance communication security of new generation networks such as 5G and beyond. However, it is difficult to achieve optimal beamforming due to the challenges of nonconvex optimization problem and imperfect channel state information (CSI). To tackle this problem, this paper proposes a novel deep learning-based 3D beamforming scheme, where a deep neural network (DNN) is trained to optimize the beamforming design for wireless signals in order to guard against eavesdropper under the imperfect CSI. With our approach, the system is capable of training the DNN model offline, and the trained model can then be adopted to instantaneously select the 3D secure beamforming matrix for achieving the maximum secrecy rate of the system, which is measured by the signal received by eavesdroppers outside the path of the beam. Simulation results demonstrate that the proposed solution outperforms the classical deep learning algorithm and 2D beamforming solution in terms of the secrecy rate and robust performance.
راعي المشروعThis research is supported by the National Research Foundation, Singapore under its Strategic Capability Research Centres Funding Initiative, Nanyang Technological University (NTU) Startup Grant, and SUTD SRG-ISTD-2021-165.
اللغةen
الناشرInstitute of Electrical and Electronics Engineers Inc.
الموضوع3D beamforming
deep learning
physical layer security
secrecy rate maximization
wireless security
العنوان3D Beamforming Based on Deep Learning for Secure Communication in 5G and beyond Wireless Networks
النوعConference Paper
dc.accessType Open Access


الملفات في هذه التسجيلة

Thumbnail

هذه التسجيلة تظهر في المجموعات التالية

عرض بسيط للتسجيلة