• English
    • العربية
  • العربية
  • Login
  • QU
  • QU Library
  •  Home
  • Communities & Collections
  • Help
    • Item Submission
    • Publisher policies
    • User guides
    • FAQs
  • About QSpace
    • Vision & Mission
View Item 
  •   Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Engineering
  • Computer Science & Engineering
  • View Item
  • Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Engineering
  • Computer Science & Engineering
  • View Item
  •      
  •  
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Bayesian Beamforming for Mobile Millimeter Wave Channel Tracking in the Presence of DOA Uncertainty

    Thumbnail
    View/Open
    Bayesian Beamforming for Mobile Millimeter Wave Channel Tracking in the Presence of DOA Uncertainty.pdf (1.881Mb)
    Date
    2020-12-01
    Author
    Yang, Yan
    Dang, Shuping
    Wen, Miaowen
    Mumtaz, Shahid
    Guizani, Mohsen
    Metadata
    Show full item record
    Abstract
    This paper proposes a Bayesian approach for angle-based hybrid beamforming and tracking that is robust to uncertain or erroneous direction-of-arrival (DOA) estimation in millimeter wave (mmWave) multiple input multiple output (MIMO) systems. Because the resolution of the phase shifters is finite and typically adjustable through a digital control, the DOA can be modeled as a discrete random variable with a prior distribution defined over a discrete set of candidate DOAs, and the variance of this distribution can be introduced to describe the level of uncertainty. The estimation problem of DOA is thereby formulated as a weighted sum of previously observed DOA values, where the weights are chosen according to a posteriori probability density function (pdf) of the DOA. To alleviate the computational complexity and cost, we present a motion trajectory-constrained a priori probability approximation method. It suggests that within a specific spatial region, a directional estimate can be close to true DOA with a high probability and sufficient to ensure trustworthiness. We show that the proposed approach has the advantage of robustness to uncertain DOA, and the beam tracking problem can be solved by incorporating the Bayesian approach with an expectation-maximization (EM) algorithm. Simulation results validate the theoretical analysis and demonstrate that the proposed solution outperforms a number of state-of-the-art benchmarks.
    URI
    https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85098005306&origin=inward
    DOI/handle
    http://dx.doi.org/10.1109/TCOMM.2020.3026377
    http://hdl.handle.net/10576/36395
    Collections
    • Computer Science & Engineering [‎2428‎ items ]

    entitlement


    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Home

    Submit your QU affiliated work

    Browse

    All of Digital Hub
      Communities & Collections Publication Date Author Title Subject Type Language Publisher
    This Collection
      Publication Date Author Title Subject Type Language Publisher

    My Account

    Login

    Statistics

    View Usage Statistics

    About QSpace

    Vision & Mission

    Help

    Item Submission Publisher policiesUser guides FAQs

    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Video