• English
    • العربية
  • العربية
  • Login
  • QU
  • QU Library
  •  Home
  • Communities & Collections
  • Help
    • Item Submission
    • Publisher policies
    • User guides
    • FAQs
  • About QSpace
    • Vision & Mission
View Item 
  •   Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Engineering
  • Chemical Engineering
  • View Item
  • Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Engineering
  • Chemical Engineering
  • View Item
  •      
  •  
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Representation of Adsorption Data for the Isopropanol-Water System using Neural Network Techniques

    Thumbnail
    Date
    2005
    Author
    Mjalli, F.
    Al-Asheh, S.
    Banat, F.
    Al-Lagtah, N.
    Metadata
    Show full item record
    Abstract
    Molecular sieves and palm stone, a newly developed bio-based adsorbent, were used to break an azeotropic isopropanol-water system via an adsorptive distillation process. Equilibrium data at different inlet water contents are presented. The data were obtained with a fixed bed adsorptive distillation process using Type 3A and Type 4A molecular sieves and palm stone. An artificial neural network (ANN) technique was used to represent the isotherm equilibrium data of this azeotropic system. The ANN prediction results were compared with the Guggenheim-Anderson-de Boer (GAB) isotherm model. It was possible to break the isopropanol-water azeotrope using this separation process with the adsorbents used in this work. Water uptake increases as the water content in the feed decreases from 16?% to 10?%. Although the GAB isotherm model was found to be applicable to the water vapor sorption data on the adsorbents examined, the ANN model fitted the equilibrium data more efficiently.
    DOI/handle
    http://dx.doi.org/10.1002/ceat.200500207
    http://hdl.handle.net/10576/3660
    Collections
    • Chemical Engineering [‎1195‎ items ]

    entitlement


    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Home

    Submit your QU affiliated work

    Browse

    All of Digital Hub
      Communities & Collections Publication Date Author Title Subject Type Language Publisher
    This Collection
      Publication Date Author Title Subject Type Language Publisher

    My Account

    Login

    Statistics

    View Usage Statistics

    About QSpace

    Vision & Mission

    Help

    Item Submission Publisher policiesUser guides FAQs

    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Video