عرض بسيط للتسجيلة

المؤلفBaly, Ramy
المؤلفBadaro, Gilbert
المؤلفEl-Khoury, Georges
المؤلفMoukalled, Rawan
المؤلفAoun, Rita
المؤلفHajj, Hazem
المؤلفEl-Hajj, Wassim
المؤلفHabash, Nizar
المؤلفShaban, Khaled
تاريخ الإتاحة2022-12-21T10:01:45Z
تاريخ النشر2017
اسم المنشورWANLP 2017, co-located with EACL 2017 - 3rd Arabic Natural Language Processing Workshop, Proceedings of the Workshop
المصدرScopus
معرّف المصادر الموحدhttp://dx.doi.org/10.18653/v1/W17-1314
معرّف المصادر الموحدhttp://hdl.handle.net/10576/37482
الملخصOpinion mining in Arabic is a challenging task given the rich morphology of the language. The task becomes more challenging when it is applied to Twitter data, which contains additional sources of noise, such as the use of unstandardized dialectal variations, the non-conformation to grammatical rules, the use of Arabizi and code-switching, and the use of non-text objects such as images and URLs to express opinion. In this paper, we perform an analytical study to observe how such linguistic phenomena vary across different Arab regions. This study of Arabic Twitter characterization aims at providing better understanding of Arabic Tweets, and fostering advanced research on the topic. Furthermore, we explore the performance of the two schools of machine learning on Arabic Twitter, namely the feature engineering approach and the deep learning approach. We consider models that have achieved state-of-the-art performance for opinion mining in English. Results highlight the advantages of using deep learning-based models, and confirm the importance of using morphological abstractions to address Arabic's complex morphology. 2017 Association for Computational Linguistics
راعي المشروعThis work was made possible by NPRP 6-716-1-138 grant from the Qatar National Research Fund (a member of Qatar Foundation). The statements made herein are solely the responsibility of the authors.
اللغةen
الناشرAssociation for Computational Linguistics (ACL)
الموضوعData mining
Deep learning
Linguistics
Morphology
Sentiment analysis
Advanced researches
Analytical studies
Characterization studies
Code-switching
Dialectal variation
Linguistic phenomena
Opinion mining
Performance
Source of noise
State of the art
Social networking (online)
العنوانA Characterization Study of Arabic Twitter Data with a Benchmarking for State-of-the-Art Opinion Mining Models
النوعConference Paper
الصفحات110-118
dc.accessType Abstract Only


الملفات في هذه التسجيلة

الملفاتالحجمالصيغةالعرض

لا توجد ملفات لها صلة بهذه التسجيلة.

هذه التسجيلة تظهر في المجموعات التالية

عرض بسيط للتسجيلة