• English
    • العربية
  • العربية
  • Login
  • QU
  • QU Library
  •  Home
  • Communities & Collections
  • Help
    • Item Submission
    • Publisher policies
    • User guides
    • FAQs
  • About QSpace
    • Vision & Mission
View Item 
  •   Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Business and Economics
  • Accounting & Information Systems
  • View Item
  • Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Business and Economics
  • Accounting & Information Systems
  • View Item
  •      
  •  
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    An optimized algorithm for optimal power flow based on deep learning

    Thumbnail
    View/Open
    Publisher version (You have accessOpen AccessIcon)
    Publisher version (Check access options)
    Check access options
    1-s2.0-S2352484721002389-main.pdf (3.463Mb)
    Date
    2021-04-21
    Author
    Qinggang, Su
    Khan, Habib Ullah
    Khan, Imran
    Choi, Bong Jun
    Wu, Falin
    Aly, Ayman A.
    ...show more authors ...show less authors
    Metadata
    Show full item record
    Abstract
    With the increasing requirements for power system transient stability assessment, the research on power system transient stability assessment theory and methods requires not only qualitative conclusions about system transient stability but also quantitative analysis of stability and even development trends. Judging from the research and development process of this direction at home and abroad in recent years, it is mainly based on the construction of quantitative index models to evaluate its transient stability and development trend. Regarding the construction theories and methods of quantitative index models, a lot of results have been achieved so far. The research ideas mainly focus on two categories: uncertainty analysis methods and deterministic analysis methods. Transient stability analysis is one of the important factors that need to be considered. Therefore, this paper proposed an optimized algorithm based on deep learning for preventive control of the transient stability in power systems. The proposed algorithm accurately fits the generator’s power and transient stability index through a deep belief network (DBN) by unsupervised pre-training and fine-tuning. The non-linear differential–algebraic equation and complex transient stability are determined using the deep neural network. The proposed algorithm minimizes the control cost under the constraints of the contingency by realizing the data-driven acquisition of the optimal preventive control. It also provides an efficient solution to stability and reliability rules with similar safety into the corresponding control model. Simulation results show that the proposed algorithm effectively improved the accuracy and reduces the complexity as compared with existing algorithms.
    URI
    https://www.sciencedirect.com/science/article/pii/S2352484721002389
    DOI/handle
    http://dx.doi.org/10.1016/j.egyr.2021.04.022
    http://hdl.handle.net/10576/37686
    Collections
    • Accounting & Information Systems [‎555‎ items ]

    entitlement


    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Home

    Submit your QU affiliated work

    Browse

    All of Digital Hub
      Communities & Collections Publication Date Author Title Subject Type Language Publisher
    This Collection
      Publication Date Author Title Subject Type Language Publisher

    My Account

    Login

    Statistics

    View Usage Statistics

    About QSpace

    Vision & Mission

    Help

    Item Submission Publisher policiesUser guides FAQs

    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Video