عرض بسيط للتسجيلة

المؤلفHimeur, Yassine
المؤلفAlsalemi, Abdullah
المؤلفBensaali, Faycal
المؤلفAmira, Abbes
تاريخ الإتاحة2022-12-29T07:34:41Z
تاريخ النشر2020
اسم المنشورProceedings - IEEE International Symposium on Circuits and Systems
المصدرScopus
معرّف المصادر الموحدhttp://hdl.handle.net/10576/37793
الملخصConsciousness about power consumption at the appliance level can assist user in promoting energy efficiency in households. In this paper, a superior non-intrusive appliance recognition method that can provide particular consumption footprints of each appliance is proposed. Electrical devices are well recognized by the combination of different descriptors via the following steps: (a) investigating the applicability along with performance comparability of several time-domain (TD) feature extraction schemes; (b) exploring their complementary features; and (c) making use of a new design of the ensemble bagging tree (EBT) classifier. Consequently, a powerful feature extraction technique based on the fusion of TD features is proposed, namely fTDF, aimed at improving the feature discrimination ability and optimizing the recognition task. An extensive experimental performance assessment is performed on two different datasets called the GREEND and WITHED, where power consumption signatures were gathered at 1 Hz and 44000 Hz sampling frequencies, respectively. The obtained results revealed prime efficiency of the proposed fTDF based EBT system in comparison with other TD descriptors and machine learning classifiers. 2020 IEEE
راعي المشروعThis paper was made possible by National Priorities Research Program (NPRP) grant No. 10-0130-170288 from the Qatar National Research Fund (a member of Qatar Foundation). The statements made herein are solely the responsibility of the authors.
اللغةen
الناشرInstitute of Electrical and Electronics Engineers Inc.
الموضوعAppliance recognition
Classification
Ensemble bagging tree
Feature extraction
Fusion
Time-domain descriptors
العنوانEfficient multi-descriptor fusion for non-intrusive appliance recognition
النوعConference Paper
رقم المجلد2020-October
dc.accessType Abstract Only


الملفات في هذه التسجيلة

الملفاتالحجمالصيغةالعرض

لا توجد ملفات لها صلة بهذه التسجيلة.

هذه التسجيلة تظهر في المجموعات التالية

عرض بسيط للتسجيلة