Using machine learning to analyze the impact of coronavirus pandemic news on the stock markets in GCC countries
المؤلف | Al-Maadid, Alanoud |
المؤلف | Alhazbi, Saleh |
المؤلف | Al-Thelaya, Khaled |
تاريخ الإتاحة | 2023-01-17T06:57:08Z |
تاريخ النشر | 2022 |
اسم المنشور | Research in International Business and Finance |
المصدر | Scopus |
الملخص | COVID-19 has resulted in high volatility in financial markets across the world. The goal of this study is to investigate the impact of COVID-19-related news on the stock markets in Gulf Cooperation Council (GCC) countries. The study utilizes machine learning approaches to assess the role of COVID-19 news in stock return predictability in these markets. The results reveal that the stock markets in the United Arab Emirates (UAE), Qatar, Saudi Arabia, and Oman were impacted by coronavirus-related news; however, this news had no impact on the stocks in Bahrain. Moreover, the results indicate that the impacted markets were influenced differently in terms of the quantities and types of news. 2022 The Authors |
راعي المشروع | The authors would like to thank Qatar University for financial support , Grant no. QUCP-CBE-2018-1 . The findings are solely the responsibility of the authors. |
اللغة | en |
الناشر | Elsevier |
الموضوع | COVID-19 GCC Machine-learning STOCK MARKETS |
النوع | Article |
رقم المجلد | 61 |
تحقق من خيارات الوصول
الملفات في هذه التسجيلة
هذه التسجيلة تظهر في المجموعات التالية
-
علوم وهندسة الحاسب [2402 items ]
-
أبحاث فيروس كورونا المستجد (كوفيد-19) [835 items ]
-
المالية والاقتصاد [419 items ]