• English
    • العربية
  • العربية
  • Login
  • QU
  • QU Library
  •  Home
  • Communities & Collections
  • Help
    • Item Submission
    • Publisher policies
    • User guides
    • FAQs
  • About QSpace
    • Vision & Mission
View Item 
  •   Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Engineering
  • Mechanical & Industrial Engineering
  • View Item
  • Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Engineering
  • Mechanical & Industrial Engineering
  • View Item
  •      
  •  
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    A need for functionally graded stiffness femoral stem for reduction in stress shielding and promoting bone growth: Computational analysis

    Thumbnail
    Date
    2017
    Author
    Tarlochan, Faris
    Mehboob, Hassan
    Metadata
    Show full item record
    Abstract
    Total Hip Arthroplasty (THA) is an orthopaedic procedure that is available to reduce pain and restore the functionality of hip joints. THA has been successfully implemented for the last 40 years. However, after more than 40 years of design and implementation, premature loosening of the femoral stem still occurs due to the stress shielding. Stress shielding can be reduced by using implants with lower stiffness. This however, could increase the micromotion and interface debonding between the stem and femur bone. The aim of this study is to investigate stress and micromotion distribution across the length of the stem and to develop a bone in growth simulation model. To achieve this, a bone growth mechano-regulation algorithm based on deviatoric strain was applied to study the tissue differentiation process. The initial outcome of the study indicates that the stiffness of the implant should not be uniform rather graded from the distal to proximal and lateral to medial directions of the implant. With such graded stiffness, bone growth density was possible across the entire length of the stem, hence reducing aseptic loosening due to stress shielding. Copyright 2017 ASME.
    DOI/handle
    http://dx.doi.org/10.1115/IMECE2017-70675
    http://hdl.handle.net/10576/38885
    Collections
    • Mechanical & Industrial Engineering [‎1461‎ items ]

    entitlement


    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Home

    Submit your QU affiliated work

    Browse

    All of Digital Hub
      Communities & Collections Publication Date Author Title Subject Type Language Publisher
    This Collection
      Publication Date Author Title Subject Type Language Publisher

    My Account

    Login

    Statistics

    View Usage Statistics

    About QSpace

    Vision & Mission

    Help

    Item Submission Publisher policiesUser guides FAQs

    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Video