عرض بسيط للتسجيلة

المؤلفBa- Hattab, Raidan
المؤلفBarhom, Noha
المؤلفOsman, Safa A. Azim
المؤلفNaceur, Iheb
المؤلفOdeh, Aseel
المؤلفAsad, Arisha
المؤلفAl-Najdi, Shahd Ali R. N.
المؤلفAmeri, Ehsan
المؤلفDaer, Ammar
المؤلفDa Silva, Renan L. B.
المؤلفCosta, Claudio
المؤلفCortes, Arthur R. G.
المؤلفTamimi, Faleh
تاريخ الإتاحة2023-01-29T05:53:24Z
تاريخ النشر2023
اسم المنشورApplied Sciences
المعرّفhttp://dx.doi.org/10.3390/app13031516
الاقتباسBa-Hattab, R.; Barhom, N.; Osman, S.A.A.; Naceur, I.; Odeh, A.; Asad, A.; Al-Najdi, S.A.R.N.; Ameri, E.; Daer, A.; Da Silva, R.L.B.; Costa, C.; Cortes, A.R.G.; Tamimi, F. Detection of Periapical Lesions on Panoramic Radiographs Using Deep Learning. Appl. Sci. 2023, 13, 1516. https://doi.org/10.3390/app13031516
معرّف المصادر الموحدhttp://hdl.handle.net/10576/38984
الملخصDentists could fail to notice periapical lesions (PLs) while examining panoramic radiographs. Accordingly, this study aimed to develop an artificial intelligence (AI) designed to address this problem. Materials and methods: a total of 18618 periapical root areas (PRA) on 713 panoramic radiographs were annotated and classified as having or not having PLs. An AI model consisting of two convolutional neural networks (CNNs), a detector and a classifier, was trained on the images. The detector localized PRAs using a bounding-box-based object detection model, while the classifier classified the extracted PRAs as PL or not-PL using a fine-tuned CNN. The classifier was trained and validated on a balanced subset of the original dataset that included 3249 PRAs, and tested on 707 PRAs. Results: the detector achieved an average precision of 74.95%, while the classifier accuracy, sensitivity and specificity were 84%, 81% and 86%, respectively. When integrating both detection and classification models, the proposed method accuracy, sensitivity, and specificity were 84.6%, 72.2%, and 85.6%, respectively. Conclusion: a two-stage CNN model consisting of a detector and a classifier can successfully detect periapical lesions on panoramic radiographs.
اللغةen
الناشرMDPI
الموضوعartificial intelligence
neural network
periapical lesion
panoramic radiographs
العنوانDetection of Periapical Lesions on Panoramic Radiographs Using Deep Learning
النوعArticle
رقم العدد3
رقم المجلد13
ESSN2076-3417
dc.accessType Open Access


الملفات في هذه التسجيلة

Thumbnail

هذه التسجيلة تظهر في المجموعات التالية

عرض بسيط للتسجيلة